Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetrat...X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.展开更多
The X-ray free-electron laser(XFEL),a new X-ray light source,presents numerous opportunities for scientific research.Self-amplified spontaneous emission(SASE)is one generation mode of XFEL in which each pulse is uniqu...The X-ray free-electron laser(XFEL),a new X-ray light source,presents numerous opportunities for scientific research.Self-amplified spontaneous emission(SASE)is one generation mode of XFEL in which each pulse is unique.In this paper,we propose a pinhole diffraction method to accurately determine the XFEL photon energy,pulses'photon energy jitter,and sample-to-detector distance for soft X-ray.This method was verified at Shanghai soft X-ray Free-Electron Laser(SXFEL).The measured average photon energy was 406.5 eV,with a photon energy jitter(root-mean-square)of 1.39 eV,and the sample-to-detector distance was calculated to be 16.61 cm.展开更多
A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facili...A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facility(SSRF).This spectrometer was utilized to implement X-ray emission spectroscopy(XES),high-energy resolution fluorescence-detected X-ray absorption spectroscopy(HERFD-XAS),and resonant inelastic X-ray scattering.Seven spherically bent crystals were positioned on the respective vertical 500-mm-diameter Rowland circles,adopting an area detector to increase the solid angle to 1.75%of 4πsr,facilitating the study of low-concentrate systems under complex reaction conditions.Operated under the atmosphere pressure,the spectrometer covers the energy region from 3.5 to 18 keV,with the Bragg angle ranging from 73°to 86°during vertical scanning.It offers a promised energy resolution of sub-eV(XES)and super-eV(HERFD-XAS).Generally,these comprehensive core-level spectroscopy methods based on hard X-rays at the E-line with an extremely high photon flux can meet the crucial requirements of a green energy strategy.Moreover,they provide substantial support for scientific advances in fundamental research.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai...The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.展开更多
To achieve high-efficiency operation of the highgain free-electron laser(FEL),the electron beams and radiated photon beams need to be overlapped precisely and pass through the entire undulator section.Therefore,a high...To achieve high-efficiency operation of the highgain free-electron laser(FEL),the electron beams and radiated photon beams need to be overlapped precisely and pass through the entire undulator section.Therefore,a high-resolution beam-position monitor(BPM)is required.A cavity BPM(CBPM)with a resonant cavity structure was developed and used in the Shanghai Soft X-ray FEL(SXFEL)test facility and can achieve a position resolution of<1μm.The construction and operation of the SXFEL user facility also bring about higher requirements for beamposition measurement.In this case,the factors that affect the performance of the CBPM system were further analyzed.These included the amplitude and phase stability of the local oscillator,stability of the trigger signal,performance of the radio frequency front-end,signal processing electronics,and signal processing algorithms.Based on the upgrade and optimization of the system,a beam test platform was built at the end of the linear acceleration section of the SXFEL,and the experimental results show that the position resolution of the system can reach 177 nm at a bunch charge of 500 pC,and the dynamic range is controlled within±300μm,and the relative measurement uncertainty of the bunch charge can reach 0.021%,which are significant improvements compared to the attributes of the previous system.展开更多
The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstation...The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.展开更多
Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Sha...Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Shanghai.The synchrotron,beam delivery system,and other technical systems were commissioned and reached their expected performances.After a clinical trial of 47 patients was finished,the proton therapy facility obtained a registration certificate from the National Medical Products Administration.The characteristics of the accelerator and treatment systems are described in this article.展开更多
An experimental picosecond time-resolved X-ray ferromagnetic resonance(TR-XFMR)apparatus with a time resolution of 13 ps(RMS)or 31 ps(FWHM)was constructed and demonstrated in the 07U and 08U1A soft X-ray beamlines at ...An experimental picosecond time-resolved X-ray ferromagnetic resonance(TR-XFMR)apparatus with a time resolution of 13 ps(RMS)or 31 ps(FWHM)was constructed and demonstrated in the 07U and 08U1A soft X-ray beamlines at the Shanghai Synchrotron Radiation Facility(SSRF)using pump-probe detection and X-ray magnetic circular dichroism(XMCD)spectroscopy.Element and time-resolved ferromagnetic resonance was excited by continuous microwave phase-locking of the bunch clock within the photon beam during synchrotron radiation and was characterized by detecting the magnetic circular dichroism signals of the elements of interest in the magnetic films.Using this equipment,we measured the amplitude of the element-specific moment precession during ferromagnetic resonance(FMR)at 2 GHz in a single Ni81Fe19layer.展开更多
Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focus...Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.展开更多
BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2...BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.展开更多
The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three...The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.展开更多
The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear ...The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.展开更多
Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,hi...Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.展开更多
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural...The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.展开更多
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing...Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.展开更多
The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray di...The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.展开更多
The SSRF phase-Ⅱ beamline project was launched in 2016. Its major goal was to establish a systematic state-of-the-art experimental facility for third-generation synchrotron radiation to solve problems in cutting-edge...The SSRF phase-Ⅱ beamline project was launched in 2016. Its major goal was to establish a systematic state-of-the-art experimental facility for third-generation synchrotron radiation to solve problems in cutting-edge science and technology.Currently, the construction is fully completed. All 16 newly built beamlines with nearly 60 experimental methods passed acceptance testing by the Chinese Academy of Sciences and are in operation.展开更多
The dynamics beamline(D-Line),which combines synchrotron radiation infrared spectroscopy(SR-IR)and energy-disper-sive X-ray absorption spectroscopy(ED-XAS),is the first beamline in the world to realize concurrent ED-X...The dynamics beamline(D-Line),which combines synchrotron radiation infrared spectroscopy(SR-IR)and energy-disper-sive X-ray absorption spectroscopy(ED-XAS),is the first beamline in the world to realize concurrent ED-XAS and SR-IR measurements at the same sample position on a millisecond time-resolved scale.This combined technique is effective for investigating rapid structural changes in atoms,electrons,and molecules in complicated disorder systems,such as those used in physics,chemistry,materials science,and extreme conditions.Moreover,ED-XAS and SR-IR can be used independently in the two branches of the D-Line.The ED-XAS branch is the first ED-XAS beamline in China,which uses a tapered undulator light source and can achieve approximately 2.5×10^(12)photons/s·300 eV BW@7.2 keV at the sample position.An exchange-able polychromator operating in the Bragg-reflection or Laue-transmission configuration is used in different energy ranges to satisfy the requirements for beam size and energy resolution.The focused beam size is approximately 3.5μm(H)×21.5μm(V),and the X-ray energy range is 5–25 keV.Using one-and two-dimensional position-sensitive detectors with frame rates of up to 400 kHz enables time resolutions of tens of microseconds to be realized.Several distinctive techniques,such as the concurrent measurement of in situ ED-XAS and infrared spectroscopy,time-resolved ED-XAS,high-pressure ED-XAS,XMCD,and pump-probe ED-XAS,can be applied to achieve different scientific goals.展开更多
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
基金This work was supported by National Natural Science Foundation of China(No.12075304)Natural Science Foundation of Shanghai(No.22ZR1442100)National Key Research and Development Program of China(No.2022YFB3503904).
文摘X-ray photon correlation spectroscopy(XPCS)has emerged as a powerful tool for probing the nanoscale dynamics of soft condensed matter and strongly correlated materials owing to its high spatial resolution and penetration capabilities.This technique requires high brilliance and beam coherence,which are not directly available at modern synchrotron beamlines in China.To facilitate future XPCS experiments,we modified the optical setup of the newly commissioned BL10U1 USAXS beamline at the Shanghai Synchrotron Radiation Facility(SSRF).Subsequently,we performed XPCS measurements on silica suspensions in glycerol,which were opaque owing to their high concentrations.Images were collected using a high frame rate area detector.A comprehensive analysis was performed,yielding correlation functions and several key dynamic parameters.All the results were consistent with the theory of Brownian motion and demonstrated the feasibility of XPCS at SSRF.Finally,by carefully optimizing the setup and analyzing the algorithms,we achieved a time resolution of 2 ms,which enabled the characterization of millisecond dynamics in opaque systems.
基金supported by the Major State Basic Research Development Program of China(No.2022YFA1603703)the National Natural Science Foundation of China(No.12335020)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB37040303)supported by the Shanghai Soft X-ray Free-Electron Laser Beamline Project。
文摘The X-ray free-electron laser(XFEL),a new X-ray light source,presents numerous opportunities for scientific research.Self-amplified spontaneous emission(SASE)is one generation mode of XFEL in which each pulse is unique.In this paper,we propose a pinhole diffraction method to accurately determine the XFEL photon energy,pulses'photon energy jitter,and sample-to-detector distance for soft X-ray.This method was verified at Shanghai soft X-ray Free-Electron Laser(SXFEL).The measured average photon energy was 406.5 eV,with a photon energy jitter(root-mean-square)of 1.39 eV,and the sample-to-detector distance was calculated to be 16.61 cm.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1503801,2021YFA1600800)the Photon Science Center for Carbon Neutrality of Chinese Academy of Sciences+2 种基金Shanghai Science and Technology Development Funds(Nos.22YF1454500,23ZR1471400)the CAS Project for Young Scientists in Basic Research(No.YSBR-022)the National Natural Science Foundation of China(No.12305375)。
文摘A Johann-type X-ray spectrometer was successfully developed at the hard X-ray branch(in-vacuum undulator with a 24-mm periodic length)of the energy material beamline(E-line)at the Shanghai Synchrotron Radiation Facility(SSRF).This spectrometer was utilized to implement X-ray emission spectroscopy(XES),high-energy resolution fluorescence-detected X-ray absorption spectroscopy(HERFD-XAS),and resonant inelastic X-ray scattering.Seven spherically bent crystals were positioned on the respective vertical 500-mm-diameter Rowland circles,adopting an area detector to increase the solid angle to 1.75%of 4πsr,facilitating the study of low-concentrate systems under complex reaction conditions.Operated under the atmosphere pressure,the spectrometer covers the energy region from 3.5 to 18 keV,with the Bragg angle ranging from 73°to 86°during vertical scanning.It offers a promised energy resolution of sub-eV(XES)and super-eV(HERFD-XAS).Generally,these comprehensive core-level spectroscopy methods based on hard X-rays at the E-line with an extremely high photon flux can meet the crucial requirements of a green energy strategy.Moreover,they provide substantial support for scientific advances in fundamental research.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
文摘The protein complex crystallographic beamline BL19U1 at the Shanghai Synchrotron Radiation Facility is one of the five beamlines dedicated to protein sciences operated by National Facility for Protein Science(Shanghai,China).The beamline,which features a small-gap invacuum undulator,has been officially open to users since March 2015.This beamline delivers X-ray in the energy range 7–15 keV.With its high flux,low divergence beam and a large active area detector,BL19U1 is designed for proteins with large molecular weight and large crystallographic unit cell dimensions.Good performance and stable operation of the beamline have allowed the number of Protein Data Bank(PDB)depositions and the number of articles published based on data collected at this beamline to increase steadily.To date,over 300 research groups have collected data at the beamline.More than 600 PDB entries have been deposited at the PDB(www.pdb.org).More than 300 papers have been published that include data collected at the beamline,including 21 research articles published in the top-level journals Cell,Nature,and Science.
基金supported by the National Key Research and Development Program of China(No.2016YFA0401903)National Natural Science Foundation of China(No.12175293)+1 种基金the Young and Middle-Aged Leading ScientistsEngineers and Innovators through the Ten Thousand Talent Program。
文摘To achieve high-efficiency operation of the highgain free-electron laser(FEL),the electron beams and radiated photon beams need to be overlapped precisely and pass through the entire undulator section.Therefore,a high-resolution beam-position monitor(BPM)is required.A cavity BPM(CBPM)with a resonant cavity structure was developed and used in the Shanghai Soft X-ray FEL(SXFEL)test facility and can achieve a position resolution of<1μm.The construction and operation of the SXFEL user facility also bring about higher requirements for beamposition measurement.In this case,the factors that affect the performance of the CBPM system were further analyzed.These included the amplitude and phase stability of the local oscillator,stability of the trigger signal,performance of the radio frequency front-end,signal processing electronics,and signal processing algorithms.Based on the upgrade and optimization of the system,a beam test platform was built at the end of the linear acceleration section of the SXFEL,and the experimental results show that the position resolution of the system can reach 177 nm at a bunch charge of 500 pC,and the dynamic range is controlled within±300μm,and the relative measurement uncertainty of the bunch charge can reach 0.021%,which are significant improvements compared to the attributes of the previous system.
基金the Shanghai Soft X-ray Free-Electron Laser Facility beamline projectionfunded by the Major State Basic Research Development Program of China(No.2017YFA0504802)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 37040303)National Natural Science Foundation of China(No.21727817).
文摘The Shanghai soft X-ray free-electron laser(SXFEL)user facility project started in 2016 and is expected to be open to users by 2022.It aims to deliver ultra-intense coherent femtosecond X-ray pulses to five endstations covering a range of 100–620 eV for ultrafast X-ray science.Two undulator lines are designed and constructed,based on different lasing modes:self-amplified spontaneous emission and echo-enabled harmonic generation.The coherent scattering and imaging(CSI)endstation is the first of five endstations to be commissioned online.It focuses on high-resolution single-shot imaging and the study of ultrafast dynamic processes using coherent forward scattering techniques.Both the single-shot holograms and coherent diffraction patterns were recorded and reconstructed for nanoscale imaging,indicating the excellent coherence and high peak power of the SXFEL and the possibility of‘‘diffraction before destruction’’experiments at the CSI endstation.In this study,we report the first commissioning results of the CSI endstation.
文摘Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Shanghai.The synchrotron,beam delivery system,and other technical systems were commissioned and reached their expected performances.After a clinical trial of 47 patients was finished,the proton therapy facility obtained a registration certificate from the National Medical Products Administration.The characteristics of the accelerator and treatment systems are described in this article.
基金supported by the Nation Key R&D Program of China(No.2021YFA1601003 and 2017YFA0403400)the National Natural Science Foundation of China(Nos.11875314,52032005,and11805260)+1 种基金the National Basic Research Program of the Ministry of Industry and Information Technology,China(No.2016YFB0700402)conducted on 07U and 08U1A soft X-ray beamlines at the SSRF。
文摘An experimental picosecond time-resolved X-ray ferromagnetic resonance(TR-XFMR)apparatus with a time resolution of 13 ps(RMS)or 31 ps(FWHM)was constructed and demonstrated in the 07U and 08U1A soft X-ray beamlines at the Shanghai Synchrotron Radiation Facility(SSRF)using pump-probe detection and X-ray magnetic circular dichroism(XMCD)spectroscopy.Element and time-resolved ferromagnetic resonance was excited by continuous microwave phase-locking of the bunch clock within the photon beam during synchrotron radiation and was characterized by detecting the magnetic circular dichroism signals of the elements of interest in the magnetic films.Using this equipment,we measured the amplitude of the element-specific moment precession during ferromagnetic resonance(FMR)at 2 GHz in a single Ni81Fe19layer.
基金supported by the National Key Research and Development Program of China(No.2021YFC2301405)the National Natural Science Foundation of China(No.31971121)Shanghai Science and Technology Plan Project(No.21ZR14718)。
文摘Macromolecular crystallography beamline BL17U1 at the Shanghai Synchrotron Radiation Facility has been relocated,upgraded,and given a new ID(BL02U1).It now delivers X-rays in the energy range of 6–16 keV,with a focused beam of 11.6μm×4.8μm and photon flux greater than 1012 phs/s.The high credibility and stability of the beam and good timing synchronization of the equipment significantly improve the experimental efficiency.Since June 2021,when it officially opened to users,over 4200 h of beamtime have been provided to over 200 research groups to collect data at the beamline.Its good performance and stable operation have led to the resolution of several structures based on data collected at the beamline.
基金supported by the SSRF Phase-II projectNatural Science Foundation of Shanghai(Nos.21ZR1471800 and 23ZR1471200)National Natural Science Foundation of China(No.12005281)。
文摘BL10U2 is an undulator-based macromolecular crystallography(MX)beamline located at the 3.5-GeV Shanghai Synchrotron Radiation Facility.BL10U2 is specifically designed for conducting routine and biosafety level-2(BSL-2)MX experiments utilizing high-flux tunable X-rays with energies from 7 to 18 keV,providing a beam spot size of 20μm(horizontal)×10μm(vertical)at the sample point.Certification by the Shanghai Pudong Municipal Health Commission confirmed the capability to perform BSL-2 MX experiments.The beamline is currently equipped with an Eiger X 16 M detector and two newly developed in-house high-precision diffractometers that can be switched to perform conventional or in situ crystal diffraction experiments.An automatic sample changer developed in-house allows fast sample exchange in less than 30 s,supporting high-throughput MX experimentation and rapid crystal screening.Data collection from both the diffractometer and detector was controlled by an in-house developed data collection software(Finback)with a user-friendly interface for convenient operation.This study presents a comprehensive overview of the facilities,experimental methods,and performance characteristics of the BL10U2 beamline.
基金This work was supported by the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the National Natural Science Foundation of China(No.12005282)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021283)the Shanghai Pilot Program for Basic Research—Chinese Academy of Science,Shanghai Branch(JCYJSHFY-2021-010).
文摘The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.
文摘The Shanghai Laser Electron Gamma Source(SLEGS, located in BL03SSID) beamline at the Shanghai Synchrotron Radiation Facility(SSRF) is a Laser Compton Scattering(LCS) gamma source used for the investigation of nuclear structure, which is in extensive demand in fields such as nuclear astrophysics, nuclear cluster structure, polarization physics, and nuclear energy. The beamline is based on the inverse Compton scattering of 10640 nm photons on 3.5 GeV electrons and a gamma source with variable energy by changing the scattering angle from 20° to 160°. γ rays of 0.25-21.1 MeV can be extracted by the scheme consisting of the interaction chamber, coarse collimator, fine collimator, and attenuator. The maximum photon flux for 180° is approximately 10~7 photons/s at the target at 21.7 MeV, with a 3-mm-diameter beam. The beamline was equipped with four types of spectrometers for experiments in( γ,γ'),( γ,n),( γ,p), and( γ,α). At present, Nuclear Resonance Fluorescence(NRF) spectrometry, Flat-Efficiency neutron Detector(FED) spectrometry, neutron Time-Of-Flight(TOF) spectrometry, and Light-Charged Particle(LCP) spectrometry methods have been developed.
基金The financial support from the National Natural Science Foundation of China(22278419,21978316,22108289,22172188)the Ministry of Science and Technology of China(2018YFB0604700)Suzhou Key Technology Research(Social Development)Project(2023ss06)。
文摘Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.
基金supported by Program for National Natural Science Foundation of China(Nos.22178135,21978104 and 22278419)the National Key Research and Development Program of China(No.2021YFC2101601)。
文摘The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.
基金This work was supported by the National Natural Science Foundation of China(62271299)Shanghai Sailing Program(22YF1413400).Shanghai Engineering Research Center for We thank the Integrated Circuits and Advanced Display Materials.
文摘Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.
基金National Natural Science Foundation of China(Nos.12334010,42274121).
文摘The ultrahard X-ray multifunctional application beamline(BL12SW)is a phase-II beamline project at the Shanghai Syn-chrotron Radiation Facility.The primary X-ray techniques used at the beamline are high-energy X-ray diffraction and imaging using white and monochromatic light.The main scientific objectives of ultrahard X-ray beamlines are focused on two research areas.One is the study of the structural properties of Earth’s interior and new materials under extreme high-temperature and high-pressure conditions,and the other is the characterization of materials and processes in near-real service environments.The beamline utilizes a superconducting wiggler as the light source,with two diamond windows and SiC discs to filter out low-energy light(primarily below 30 keV)and a Cu filter assembly to control the thermal load entering the subsequent optical components.The beamline is equipped with dual monochromators.The first was a meridional bending Laue monochromator cooled by liquid nitrogen,achieving a full-energy coverage of 30-162 keV.The second was a sagittal bending Laue monochromator installed in an external building,providing a focused beam in the horizontal direction with an energy range of 60-120 keV.There were four experimental hutches:two large-volume press experimental hutches(LVP1 and LVP2)and two engineering material experimental hutches(ENG1 and ENG2).Each hutch was equipped with various near-real service conditions to satisfy different requirements.For example,LVP1 and LVP2 were equipped with a 200-ton DDIA press and a 2000-ton dual-mode(DDIA and Kawai)press,respectively.ENG1 and ENG2 provide in situ tensile,creep,and fatigue tests as well as high-temperature conditions.Since June 2023,the BL12SW has been in trial operation.It is expected to officially open to users by early 2024.
文摘The SSRF phase-Ⅱ beamline project was launched in 2016. Its major goal was to establish a systematic state-of-the-art experimental facility for third-generation synchrotron radiation to solve problems in cutting-edge science and technology.Currently, the construction is fully completed. All 16 newly built beamlines with nearly 60 experimental methods passed acceptance testing by the Chinese Academy of Sciences and are in operation.
基金supported by the SSRF Phase-II Beamline Project.
文摘The dynamics beamline(D-Line),which combines synchrotron radiation infrared spectroscopy(SR-IR)and energy-disper-sive X-ray absorption spectroscopy(ED-XAS),is the first beamline in the world to realize concurrent ED-XAS and SR-IR measurements at the same sample position on a millisecond time-resolved scale.This combined technique is effective for investigating rapid structural changes in atoms,electrons,and molecules in complicated disorder systems,such as those used in physics,chemistry,materials science,and extreme conditions.Moreover,ED-XAS and SR-IR can be used independently in the two branches of the D-Line.The ED-XAS branch is the first ED-XAS beamline in China,which uses a tapered undulator light source and can achieve approximately 2.5×10^(12)photons/s·300 eV BW@7.2 keV at the sample position.An exchange-able polychromator operating in the Bragg-reflection or Laue-transmission configuration is used in different energy ranges to satisfy the requirements for beam size and energy resolution.The focused beam size is approximately 3.5μm(H)×21.5μm(V),and the X-ray energy range is 5–25 keV.Using one-and two-dimensional position-sensitive detectors with frame rates of up to 400 kHz enables time resolutions of tens of microseconds to be realized.Several distinctive techniques,such as the concurrent measurement of in situ ED-XAS and infrared spectroscopy,time-resolved ED-XAS,high-pressure ED-XAS,XMCD,and pump-probe ED-XAS,can be applied to achieve different scientific goals.