Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduc...Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduction technology is considered to be an effective method to minimize center segregation. To elucidate the effect of soft reduction on the internal quality of high-carbon steel billets, soft reduction was applied with different solid fractions in the core area of billets in a laboratory casting machine. A coupled temperature/displacement finite element model was developed to calculate the solid fraction using the commercial software ABAQUS. Center segregation, center porosity, homogeneity of elements, and equiaxed crystal zone were obviously improved by applying soft reduction, especially when the solid fraction was less than 1.0. The optimal results were obtained when the solid fraction was approximately 0.9.展开更多
To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft ...To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft reduction tests were carried out in a laboratory strand casting machine. With the finite element models, the temperature distribution, the stress and strain states in the billet were calculated. The relation between internal cracks and equivalent plastic strain, as well as maximal principal stress was analyzed. The results indicate that tensile stresses can develop in the mushy zone during soft reduction and the equivalent strain nearby the zero ductility temperature (ZDT) increases with decreasing solid fraction. Internal cracks can be initiated when the accumulated strain exceeds the critical strain or the applied tensile stress exceeds the critical fracture stress during solidification.展开更多
One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom eco...One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom economy.In practice,the coal ash fusibility is a critical factor to determine steady operation standards of the gasifier,which is also the significant criterion to coal species selection for gasification.Since coal behaviors are resultant from various evolutions in different scales,the multi-scale understanding of the ash chemistry is of significance to guide the fusibility adjustment for coal gasification.Considering important roles of molecular simulation in exploring ash chemistry,this paper reviews the recent studies and developments on modeling of molecular systems for fusibility related ash chemistry for the first time.The discussions are emphasized on those performed by quantum mechanics and molecular mechanics,the two major simulation methods for microscopic systems,which may provide various insights into fusibility mechanism.This review article is expected to present comprehensive information for recent molecular simulations of coal chemistry so that new clues to find strategies controlling the ash fusion behavior can be obtained.展开更多
Sulfur trioxide(SO_(3))as a condensable particle matter has a significant influence on atmospheric visibility,which easily arouses formation of haze.It is imperative to control the SO_(3)emission from the industrial f...Sulfur trioxide(SO_(3))as a condensable particle matter has a significant influence on atmospheric visibility,which easily arouses formation of haze.It is imperative to control the SO_(3)emission from the industrial flue gas.Three commonly used basic absorbents,including Ca(OH)_(2),MgO and NaHCO_(3)were selected to explore the effects of temperature,SO_(2)concentration on the SO_(3)absorption,and the reaction mechanism of SO_(3)absorption was further illustrated.The suitable reaction temperature for various absorbents were proposed,Ca(OH)_(2)at the high temperatures above 500°C,MgO at the low temperatures below 320°C,and NaHCO_(3)at the temperature range of 320–500°C.The competitive absorption between SO_(2)and SO_(3)was found that the addition of SO_(2)reduced the SO_(3)absorption on Ca(OH)_(2)and NaHCO_(3),while had no effect on MgO.The order of the absorption selectivity of SO_(3)follows MgO,NaHCO_(3)and Ca(OH)_(2)under the given conditions in this work.The absorption process of SO_(3)on NaHCO_(3)follows the shrinking core model,thus the absorption reaction continues until NaHCO_(3)was exhausted with the utilization rate of nearly 100%.The absorption process of SO_(3)on Ca(OH)_(2)and MgO follows the grain model,and the dense product layer hinders the further absorption reaction,resulting in low utilization of about 50%for Ca(OH)_(2)and MgO.The research provides a favorable support for the selection of alkaline absorbent for SO_(3)removal in application.展开更多
The production of coal-based solid waste(CBSW)from coal mining operations poses a significant threat to the ecological environment in mining regions.This research addresses the proper management of CBSW accumulation b...The production of coal-based solid waste(CBSW)from coal mining operations poses a significant threat to the ecological environment in mining regions.This research addresses the proper management of CBSW accumulation by utilizing coal gangue,fly ash,and gasification slag as primary materials for backfill preparation.This study focused on evaluating the early uniaxial compressive strength and fluidity of the backfill while investigating the changing characteristics of early compressive strength,fluidity,and microstructure during the early age of backfill development.Findings showed that the slurry fluidity significantly decreased as the mass concentration increased,whereas factors such as the aggregate-cement mass ratio,fine aggregate content,and fiber content demonstrated no noticeable impact on slurry fluidity.Notably,the early compressive strength of the backfill decreased significantly with an increase in the aggregate-cement mass ratio;however,increases in the mass concentration and fine aggregate content effectively enhanced the early compressive strength of the backfill,serving as key influencing factors.The inclusion of fiber significantly enhanced the early compressive strength of the backfill,with the optimal fiber concentration determined to be∼0.2wt%.Furthermore,increasing the mass concentration or fine aggregate content alleviated the negative impacts of higher aggregate-cement mass ratios on early compressive strength.However,it must be noted that an elevated fine aggregate content may reduce the reinforcing effects of mass concentration on early compressive strength.This leads to enlarged void structures in the samples,whereas increasing the fine aggregate content reduces the void size and range,thereby improving the early compressive strength of the backfill.展开更多
文摘Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduction technology is considered to be an effective method to minimize center segregation. To elucidate the effect of soft reduction on the internal quality of high-carbon steel billets, soft reduction was applied with different solid fractions in the core area of billets in a laboratory casting machine. A coupled temperature/displacement finite element model was developed to calculate the solid fraction using the commercial software ABAQUS. Center segregation, center porosity, homogeneity of elements, and equiaxed crystal zone were obviously improved by applying soft reduction, especially when the solid fraction was less than 1.0. The optimal results were obtained when the solid fraction was approximately 0.9.
基金This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre (SFB) 289.
文摘To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft reduction tests were carried out in a laboratory strand casting machine. With the finite element models, the temperature distribution, the stress and strain states in the billet were calculated. The relation between internal cracks and equivalent plastic strain, as well as maximal principal stress was analyzed. The results indicate that tensile stresses can develop in the mushy zone during soft reduction and the equivalent strain nearby the zero ductility temperature (ZDT) increases with decreasing solid fraction. Internal cracks can be initiated when the accumulated strain exceeds the critical strain or the applied tensile stress exceeds the critical fracture stress during solidification.
基金supported by National Nataral Science Foundation of China-Deutsche Forschungsgemeinschaft(Grant number21761132032)National Key R&D Program of China(2017YFB0304300&2017YFB0304303)National Key R&D Program of China(2017YFB0304000)。
文摘One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom economy.In practice,the coal ash fusibility is a critical factor to determine steady operation standards of the gasifier,which is also the significant criterion to coal species selection for gasification.Since coal behaviors are resultant from various evolutions in different scales,the multi-scale understanding of the ash chemistry is of significance to guide the fusibility adjustment for coal gasification.Considering important roles of molecular simulation in exploring ash chemistry,this paper reviews the recent studies and developments on modeling of molecular systems for fusibility related ash chemistry for the first time.The discussions are emphasized on those performed by quantum mechanics and molecular mechanics,the two major simulation methods for microscopic systems,which may provide various insights into fusibility mechanism.This review article is expected to present comprehensive information for recent molecular simulations of coal chemistry so that new clues to find strategies controlling the ash fusion behavior can be obtained.
基金supported by the National Natural Science Foundation of China(No.52000172)the National Key R&D Program of China(Nos.2017YFB0304300 and 2017YFB0304303).
文摘Sulfur trioxide(SO_(3))as a condensable particle matter has a significant influence on atmospheric visibility,which easily arouses formation of haze.It is imperative to control the SO_(3)emission from the industrial flue gas.Three commonly used basic absorbents,including Ca(OH)_(2),MgO and NaHCO_(3)were selected to explore the effects of temperature,SO_(2)concentration on the SO_(3)absorption,and the reaction mechanism of SO_(3)absorption was further illustrated.The suitable reaction temperature for various absorbents were proposed,Ca(OH)_(2)at the high temperatures above 500°C,MgO at the low temperatures below 320°C,and NaHCO_(3)at the temperature range of 320–500°C.The competitive absorption between SO_(2)and SO_(3)was found that the addition of SO_(2)reduced the SO_(3)absorption on Ca(OH)_(2)and NaHCO_(3),while had no effect on MgO.The order of the absorption selectivity of SO_(3)follows MgO,NaHCO_(3)and Ca(OH)_(2)under the given conditions in this work.The absorption process of SO_(3)on NaHCO_(3)follows the shrinking core model,thus the absorption reaction continues until NaHCO_(3)was exhausted with the utilization rate of nearly 100%.The absorption process of SO_(3)on Ca(OH)_(2)and MgO follows the grain model,and the dense product layer hinders the further absorption reaction,resulting in low utilization of about 50%for Ca(OH)_(2)and MgO.The research provides a favorable support for the selection of alkaline absorbent for SO_(3)removal in application.
基金Open Fund of Anhui University of Science and Technology Engineering Laboratory for Safe and Precise Coal Mining(No.ESCMMP202402)China Postdoctoral Science Foundation(Nos.2024M750015,2024T170912,and 2023M733481)+2 种基金Key Laboratory of Xinjiang Coal Resources Green Mining,Ministry of Education(No.KLXGY-KB2418)Anhui University of Science and Technology Talent Introduction Research Fund(No.2023yjrc106)National Natural Science Foundation of China(Nos.42402287 and 52130402).
文摘The production of coal-based solid waste(CBSW)from coal mining operations poses a significant threat to the ecological environment in mining regions.This research addresses the proper management of CBSW accumulation by utilizing coal gangue,fly ash,and gasification slag as primary materials for backfill preparation.This study focused on evaluating the early uniaxial compressive strength and fluidity of the backfill while investigating the changing characteristics of early compressive strength,fluidity,and microstructure during the early age of backfill development.Findings showed that the slurry fluidity significantly decreased as the mass concentration increased,whereas factors such as the aggregate-cement mass ratio,fine aggregate content,and fiber content demonstrated no noticeable impact on slurry fluidity.Notably,the early compressive strength of the backfill decreased significantly with an increase in the aggregate-cement mass ratio;however,increases in the mass concentration and fine aggregate content effectively enhanced the early compressive strength of the backfill,serving as key influencing factors.The inclusion of fiber significantly enhanced the early compressive strength of the backfill,with the optimal fiber concentration determined to be∼0.2wt%.Furthermore,increasing the mass concentration or fine aggregate content alleviated the negative impacts of higher aggregate-cement mass ratios on early compressive strength.However,it must be noted that an elevated fine aggregate content may reduce the reinforcing effects of mass concentration on early compressive strength.This leads to enlarged void structures in the samples,whereas increasing the fine aggregate content reduces the void size and range,thereby improving the early compressive strength of the backfill.