碳化硅纳米线具有优异的电磁吸收性能,三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体,并通过...碳化硅纳米线具有优异的电磁吸收性能,三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体,并通过化学气相渗透和前驱体浸渍热解工艺得到致密的SiCNWs/SiC陶瓷基复合材料。甲烷和三氯甲基硅烷分别是热解炭和碳化硅的前驱体,随着热解碳质量分数从21.3%增加到29.5%,多孔SiCNWs预制体电磁屏蔽效率均值在8~12GHz(X)波段从9.2d B增加到64.1d B。质量增重13%的热解碳界面修饰的SiCNWs/SiC陶瓷基复合材料在X波段平均电磁屏蔽效率达到37.8 d B电磁屏蔽性能。结果显示,SiCNWs/SiC陶瓷基复合材料在新一代军事电磁屏蔽材料中具有潜在应用前景。展开更多
基金National Natural Science Foundation of China(51772310)Chinese Academy of Sciences Key Research Program of Frontier Sciences(QYZDY-SSWJSC031)Innovation Academy for Light-duty Gas Turbine,Chinese Academy of Sciences(CXYJJ20-MS-02)。
文摘碳化硅纳米线具有优异的电磁吸收性能,三维网络结构可以更好地使电磁波在空间内被多次反射和吸收。通过抽滤的方法制备得到体积分数20%交错排列的碳化硅纳米线网络预制体。然后采用化学气相渗透工艺制备热解炭界面和碳化硅基体,并通过化学气相渗透和前驱体浸渍热解工艺得到致密的SiCNWs/SiC陶瓷基复合材料。甲烷和三氯甲基硅烷分别是热解炭和碳化硅的前驱体,随着热解碳质量分数从21.3%增加到29.5%,多孔SiCNWs预制体电磁屏蔽效率均值在8~12GHz(X)波段从9.2d B增加到64.1d B。质量增重13%的热解碳界面修饰的SiCNWs/SiC陶瓷基复合材料在X波段平均电磁屏蔽效率达到37.8 d B电磁屏蔽性能。结果显示,SiCNWs/SiC陶瓷基复合材料在新一代军事电磁屏蔽材料中具有潜在应用前景。
基金National Key Research and Development Program of China(2016YFB0700202)National Natural Science Foundation of China(51772310)+2 种基金Chinese Academy of Sciences Key Research Program of Frontier Sciences(QYZDY-SSW-JSC031)Chinese Academy of Sciences Pioneer Hundred Talents Program,Shanghai Pujiang Program(17PJ1410100)Young Elite Scientist Sponsorship Program by China Academy of Space Technology(2017QNRC001)
基金National Natural Science Foundation of China (51772310)Chinese Academy of Sciences Key Research Program of Frontier Sciences (QYZDY-SSWJSC031)+1 种基金Innovation Academy for Light-duty Gas TurbineChinese Academy of Sciences (CXYJJ20-MS-02)。