为了缓解城市交通拥堵、避免交通事故的发生,城市路网的路径选择一直以来是一个热门的研究课题.随着边缘计算和车辆智能终端技术的发展,城市路网中的行驶车辆从自组织网络朝着车联网(Internet of vehicles,IoV)范式过渡,这使得车辆路径...为了缓解城市交通拥堵、避免交通事故的发生,城市路网的路径选择一直以来是一个热门的研究课题.随着边缘计算和车辆智能终端技术的发展,城市路网中的行驶车辆从自组织网络朝着车联网(Internet of vehicles,IoV)范式过渡,这使得车辆路径选择问题从基于静态历史交通数据的计算向实时交通信息计算转变.在城市路网路径选择问题上,众多学者的研究主要聚焦如何提高出行效率,减少出行时间等.然而这些研究并没有考虑所选路径是否存在风险等问题.基于以上问题,首次构造了一个基于边缘计算技术的道路风险实时评估模型(real-time road risk assessment model based on edge computing,R3A-EC),并提出基于该模型的城市路网实时路径选择方法(real-time route selection method based on risk assessment,R2S-RA).R3A-EC模型利用边缘计算技术的低延迟,高可靠性等特点对城市道路进行实时风险评估,并利用最小风险贝叶斯决策验证道路是否存在风险问题,最后在此基础上对城市路网路径选择进行优化,实现实时动态低风险的路径选择方法.实验通过与传统的最短路径Dijkstra算法、基于VANET的最短时间算法、基于MEC的动态路径规划算法以及双向A*最短路径优化算法对比,得出R2SRA方法可以更好地选择兼顾道路风险和行驶时间的优化路径,从而大大减少交通拥堵和交通事故等事件的发生.展开更多
为了缓解城市交通拥堵问题,如何充分利用现有的道路资源进行有效的路线导航,一直是学者们关心的热点问题.现有的研究方法包括:优化交通灯信号周期以增大交通流量;对个别车辆的行驶路线进行优化;利用历史交通数据或者通过路网中心和车辆...为了缓解城市交通拥堵问题,如何充分利用现有的道路资源进行有效的路线导航,一直是学者们关心的热点问题.现有的研究方法包括:优化交通灯信号周期以增大交通流量;对个别车辆的行驶路线进行优化;利用历史交通数据或者通过路网中心和车辆之间的主从式博弈进行路径导航等.然而,这些研究并没有考虑到微观行驶车辆的个性化交通需求以及多车辆彼此之间的路线选择冲突,对于城市路网中交通状况的动态不确定性也没有充分考虑.基于以上问题,提出了城市交通路网动态实时多路口路径选择模型DR2SM(dynamic and real-time route selection model in urban traffic networks),结合车辆对前方可选路线的偏好以及可选路线的实时交通状况,并利用自适应学习算法SALA(self-adaptive learning algorithm)进行博弈,以使得各行驶车辆的动态路线选择策略达到Nash均衡.展开更多
文摘为了缓解城市交通拥堵、避免交通事故的发生,城市路网的路径选择一直以来是一个热门的研究课题.随着边缘计算和车辆智能终端技术的发展,城市路网中的行驶车辆从自组织网络朝着车联网(Internet of vehicles,IoV)范式过渡,这使得车辆路径选择问题从基于静态历史交通数据的计算向实时交通信息计算转变.在城市路网路径选择问题上,众多学者的研究主要聚焦如何提高出行效率,减少出行时间等.然而这些研究并没有考虑所选路径是否存在风险等问题.基于以上问题,首次构造了一个基于边缘计算技术的道路风险实时评估模型(real-time road risk assessment model based on edge computing,R3A-EC),并提出基于该模型的城市路网实时路径选择方法(real-time route selection method based on risk assessment,R2S-RA).R3A-EC模型利用边缘计算技术的低延迟,高可靠性等特点对城市道路进行实时风险评估,并利用最小风险贝叶斯决策验证道路是否存在风险问题,最后在此基础上对城市路网路径选择进行优化,实现实时动态低风险的路径选择方法.实验通过与传统的最短路径Dijkstra算法、基于VANET的最短时间算法、基于MEC的动态路径规划算法以及双向A*最短路径优化算法对比,得出R2SRA方法可以更好地选择兼顾道路风险和行驶时间的优化路径,从而大大减少交通拥堵和交通事故等事件的发生.
文摘为了缓解城市交通拥堵问题,如何充分利用现有的道路资源进行有效的路线导航,一直是学者们关心的热点问题.现有的研究方法包括:优化交通灯信号周期以增大交通流量;对个别车辆的行驶路线进行优化;利用历史交通数据或者通过路网中心和车辆之间的主从式博弈进行路径导航等.然而,这些研究并没有考虑到微观行驶车辆的个性化交通需求以及多车辆彼此之间的路线选择冲突,对于城市路网中交通状况的动态不确定性也没有充分考虑.基于以上问题,提出了城市交通路网动态实时多路口路径选择模型DR2SM(dynamic and real-time route selection model in urban traffic networks),结合车辆对前方可选路线的偏好以及可选路线的实时交通状况,并利用自适应学习算法SALA(self-adaptive learning algorithm)进行博弈,以使得各行驶车辆的动态路线选择策略达到Nash均衡.