期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
10-Million Atoms Simulation of First-Principle Package LS3DF
1
作者 严昱瑾 李海波 +6 位作者 赵曈 汪林望 石林 刘涛 谭光明 贾伟乐 孙凝晖 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第1期45-62,共18页
The growing demand for semiconductor devices simulation poses a big challenge for large-scale electronic structure calculations.Among various methods,the linearly scaling three-dimensional fragment(LS3DF)method exhibi... The growing demand for semiconductor devices simulation poses a big challenge for large-scale electronic structure calculations.Among various methods,the linearly scaling three-dimensional fragment(LS3DF)method exhibits excellent scalability in large-scale simulations.Based on algorithmic and system-level optimizations,we propose a highly scalable and highly efficient implementation of LS3DF on a domestic heterogeneous supercomputer equipped with acceler-ators.In terms of algorithmic optimizations,the original all-band conjugate gradient algorithm is refined to achieve faster convergence,and mixed precision computing is adopted to increase overall efficiency.In terms of system-level optimiza-tions,the original two-layer parallel structure is replaced by a coarse-grained parallel method.Optimization strategies such as multi-stream,kernel fusion,and redundant computation removal are proposed to increase further utilization of the com-putational power provided by the heterogeneous machines.As a result,our optimized LS3DF can scale to a 10-million sili-con atoms system,attaining a peak performance of 34.8 PFLOPS(21.2% of the peak).All the improvements can be adapt-ed to the next-generation supercomputers for larger simulations. 展开更多
关键词 single instruction multiple thread accelerator electronic structure high-performance computing linearly scaling three-dimensional fragment(LS3DF)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部