The growing demand for semiconductor devices simulation poses a big challenge for large-scale electronic structure calculations.Among various methods,the linearly scaling three-dimensional fragment(LS3DF)method exhibi...The growing demand for semiconductor devices simulation poses a big challenge for large-scale electronic structure calculations.Among various methods,the linearly scaling three-dimensional fragment(LS3DF)method exhibits excellent scalability in large-scale simulations.Based on algorithmic and system-level optimizations,we propose a highly scalable and highly efficient implementation of LS3DF on a domestic heterogeneous supercomputer equipped with acceler-ators.In terms of algorithmic optimizations,the original all-band conjugate gradient algorithm is refined to achieve faster convergence,and mixed precision computing is adopted to increase overall efficiency.In terms of system-level optimiza-tions,the original two-layer parallel structure is replaced by a coarse-grained parallel method.Optimization strategies such as multi-stream,kernel fusion,and redundant computation removal are proposed to increase further utilization of the com-putational power provided by the heterogeneous machines.As a result,our optimized LS3DF can scale to a 10-million sili-con atoms system,attaining a peak performance of 34.8 PFLOPS(21.2% of the peak).All the improvements can be adapt-ed to the next-generation supercomputers for larger simulations.展开更多
基金This work was supported by the National Key Research and Development Program of China under Grant No.2021YFB0300600the National Natural Science Foundation of China under Grant Nos.92270206,T2125013,62032023,61972377,T2293702,and 12274360+2 种基金the Chinese Academy of Sciences Project for Young Scientists in Basic Research under Grant No.YSBR-005the Network Information Project of Chinese Academy of Sciences under Grant No.CASWX2021SF-0103the Key Research Program of Chinese Academy of Sciences under Grant No.ZDBSSSW-WHC002.
文摘The growing demand for semiconductor devices simulation poses a big challenge for large-scale electronic structure calculations.Among various methods,the linearly scaling three-dimensional fragment(LS3DF)method exhibits excellent scalability in large-scale simulations.Based on algorithmic and system-level optimizations,we propose a highly scalable and highly efficient implementation of LS3DF on a domestic heterogeneous supercomputer equipped with acceler-ators.In terms of algorithmic optimizations,the original all-band conjugate gradient algorithm is refined to achieve faster convergence,and mixed precision computing is adopted to increase overall efficiency.In terms of system-level optimiza-tions,the original two-layer parallel structure is replaced by a coarse-grained parallel method.Optimization strategies such as multi-stream,kernel fusion,and redundant computation removal are proposed to increase further utilization of the com-putational power provided by the heterogeneous machines.As a result,our optimized LS3DF can scale to a 10-million sili-con atoms system,attaining a peak performance of 34.8 PFLOPS(21.2% of the peak).All the improvements can be adapt-ed to the next-generation supercomputers for larger simulations.