We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the pr...We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the previous version.The experimental results show that the short term frequency stability of 5.4×10^-13τ-1/2 and 2.9× 10^-15 at 1-day integrating time are achieved.展开更多
The Dick effect is an important factor limiting the frequency stability of sequentially-operating atomic frequency standards. Here we study the impact of the Dick effect in the integrating sphere cold atom clock (IS...The Dick effect is an important factor limiting the frequency stability of sequentially-operating atomic frequency standards. Here we study the impact of the Dick effect in the integrating sphere cold atom clock (ISCAC). To reduce the impact of the Dick effect, a 5 MHz local oscillator with ultra-low phase noise is selected and a new microwave synthesizer is built in-house. Consequently, the phase noise of microwave signal is optimized. The contribution of the Dick effect is reduced to 2.5× 10^-13τ-1/2 (3- is the integrating time). The frequency stability of 4.6 × 10-13τ-1/2 is achieved. The development of this optimization can promote the space applications of the compact ISCA C.展开更多
We present the long-term stability of the integrating sphere cold atom clock(ISCAC) and analyze its systematic limitations. The relative frequency instability of 2.6 × 10-15 is reached for an averaging time of ...We present the long-term stability of the integrating sphere cold atom clock(ISCAC) and analyze its systematic limitations. The relative frequency instability of 2.6 × 10-15 is reached for an averaging time of 2 ×105 s. The second-order Zeeman effect and the cavity pulling effect in ISCAC, which would induce the frequency drift from the clock transition, are analyzed. The analytical and experimental results indicate that the cavity pulling effect is the main contribution to the long-term frequency instability of the ISCAC. Further technical improvements to the microwave cavity are also discussed.展开更多
基金Project supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences the National Natural Science Foundation of China(Grant Nos.61875215,61727821,and 11604353)
文摘We develop an integrated integrating sphere cold atom clock(ISCAC), which mainly consists of physical package,laser system, microwave source, and electronics.This compact system is more stable and reliable than the previous version.The experimental results show that the short term frequency stability of 5.4×10^-13τ-1/2 and 2.9× 10^-15 at 1-day integrating time are achieved.
基金Supported by the National Natural Science Foundation of China under Grant No 11604353the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘The Dick effect is an important factor limiting the frequency stability of sequentially-operating atomic frequency standards. Here we study the impact of the Dick effect in the integrating sphere cold atom clock (ISCAC). To reduce the impact of the Dick effect, a 5 MHz local oscillator with ultra-low phase noise is selected and a new microwave synthesizer is built in-house. Consequently, the phase noise of microwave signal is optimized. The contribution of the Dick effect is reduced to 2.5× 10^-13τ-1/2 (3- is the integrating time). The frequency stability of 4.6 × 10-13τ-1/2 is achieved. The development of this optimization can promote the space applications of the compact ISCA C.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (Nos. 61727821 and 11604353)
文摘We present the long-term stability of the integrating sphere cold atom clock(ISCAC) and analyze its systematic limitations. The relative frequency instability of 2.6 × 10-15 is reached for an averaging time of 2 ×105 s. The second-order Zeeman effect and the cavity pulling effect in ISCAC, which would induce the frequency drift from the clock transition, are analyzed. The analytical and experimental results indicate that the cavity pulling effect is the main contribution to the long-term frequency instability of the ISCAC. Further technical improvements to the microwave cavity are also discussed.