针对雾气导致图像中行人检测准确率不高的问题,提出了1种基于改进多尺度Retinex(multiple scale Retinex,MSR)和改进YOLOv5(you only look once v5)的雾天行人检测算法。首先,针对MSR算法容易产生光晕和伪影现象的问题,引入均值和均方...针对雾气导致图像中行人检测准确率不高的问题,提出了1种基于改进多尺度Retinex(multiple scale Retinex,MSR)和改进YOLOv5(you only look once v5)的雾天行人检测算法。首先,针对MSR算法容易产生光晕和伪影现象的问题,引入均值和均方差对其进行改进,通过伽马校正找到适宜的图像亮度,调整亮度后再对图像进行去雾操作。其次,以传统的YOLOv5检测模型为基础并对其进行改进,引入选择性内核网络(selective kernel networks,SK-Net)模块,与YOLOv5的骨干网络(Backbone)端相融合,输入信息自适应地调整其感受野大小,加强模型对主要信息的提取,提升模型的精度。实验结果表明,改进后的MSR和改进后的YOLOv5相结合得到的算法,各项行人检测指标都有较大提升,其识别精确率、召回率、各类别平均精度均值分别达到了91.2%、87.3%、90.1%,改进后的算法能有效提高雾天行人检测的效率。展开更多
新闻文本分类是长文本分类的典型问题,因此提取词与词之间的关系特征就尤为重要.提出了基于双向Transformer编码表示的预训练模型(Bidirectional Encoder Representations from Transformers,BERT)和双向长短时记忆网络(Bi-directional ...新闻文本分类是长文本分类的典型问题,因此提取词与词之间的关系特征就尤为重要.提出了基于双向Transformer编码表示的预训练模型(Bidirectional Encoder Representations from Transformers,BERT)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)以及注意力机制的对抗训练分类模型(BBA-AT).将预处理新闻文本数据经过BERT进行训练得到词嵌入编码,在训练后的词向量级别上进行扰动达到数据增广的效果,以此来进行对抗训练,之后通过双向长短时记忆网络对数据集进行编码提取双向语义表征.本文提出的BBA-AT模型F 1值在TNEWS数据集上比BERT模型提升了1.34%.展开更多
在自然语言处理领域的下游任务中,具有代表性的双向Transformer编码表示的预训练模型(Bidirectional Encoder Representations from Transformers)BERT呈现出非常出色的性能。为了解决预训练模型的预训练阶段任务和下游任务不一致,利用...在自然语言处理领域的下游任务中,具有代表性的双向Transformer编码表示的预训练模型(Bidirectional Encoder Representations from Transformers)BERT呈现出非常出色的性能。为了解决预训练模型的预训练阶段任务和下游任务不一致,利用提示学习的修改策略以及自注意力机制的方法,构建新的掩盖训练任务,在官方的中文BERT预训练模型的基础上再训练。这样不仅能运用到预训练任务获得的知识,而且可以针对性的对下游任务上进行提升,最终加强模型的抗干扰能力以及学习效率。研究结果表明:相较RoBERTa和BERT,在数据集THUCNews和TNEWS上这种模型能达更高的分数。展开更多
文摘针对雾气导致图像中行人检测准确率不高的问题,提出了1种基于改进多尺度Retinex(multiple scale Retinex,MSR)和改进YOLOv5(you only look once v5)的雾天行人检测算法。首先,针对MSR算法容易产生光晕和伪影现象的问题,引入均值和均方差对其进行改进,通过伽马校正找到适宜的图像亮度,调整亮度后再对图像进行去雾操作。其次,以传统的YOLOv5检测模型为基础并对其进行改进,引入选择性内核网络(selective kernel networks,SK-Net)模块,与YOLOv5的骨干网络(Backbone)端相融合,输入信息自适应地调整其感受野大小,加强模型对主要信息的提取,提升模型的精度。实验结果表明,改进后的MSR和改进后的YOLOv5相结合得到的算法,各项行人检测指标都有较大提升,其识别精确率、召回率、各类别平均精度均值分别达到了91.2%、87.3%、90.1%,改进后的算法能有效提高雾天行人检测的效率。
文摘新闻文本分类是长文本分类的典型问题,因此提取词与词之间的关系特征就尤为重要.提出了基于双向Transformer编码表示的预训练模型(Bidirectional Encoder Representations from Transformers,BERT)和双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)以及注意力机制的对抗训练分类模型(BBA-AT).将预处理新闻文本数据经过BERT进行训练得到词嵌入编码,在训练后的词向量级别上进行扰动达到数据增广的效果,以此来进行对抗训练,之后通过双向长短时记忆网络对数据集进行编码提取双向语义表征.本文提出的BBA-AT模型F 1值在TNEWS数据集上比BERT模型提升了1.34%.
文摘在自然语言处理领域的下游任务中,具有代表性的双向Transformer编码表示的预训练模型(Bidirectional Encoder Representations from Transformers)BERT呈现出非常出色的性能。为了解决预训练模型的预训练阶段任务和下游任务不一致,利用提示学习的修改策略以及自注意力机制的方法,构建新的掩盖训练任务,在官方的中文BERT预训练模型的基础上再训练。这样不仅能运用到预训练任务获得的知识,而且可以针对性的对下游任务上进行提升,最终加强模型的抗干扰能力以及学习效率。研究结果表明:相较RoBERTa和BERT,在数据集THUCNews和TNEWS上这种模型能达更高的分数。