期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于注意力学习的正则化相关滤波跟踪算法 被引量:7
1
作者 仇祝令 查宇飞 +1 位作者 吴敏 王青 《电子学报》 EI CAS CSCD 北大核心 2020年第9期1762-1768,共7页
边界效应是制约相关滤波跟踪性能的一个重要因素.目前大多数方法只是简单地采用先验知识,如逆高斯分布,预设掩模等,或者分割前景目标作为正则化项,进行约束求解,并没有考虑目标的空时域特性.针对这一问题,本文提出一种基于注意力学习的... 边界效应是制约相关滤波跟踪性能的一个重要因素.目前大多数方法只是简单地采用先验知识,如逆高斯分布,预设掩模等,或者分割前景目标作为正则化项,进行约束求解,并没有考虑目标的空时域特性.针对这一问题,本文提出一种基于注意力学习的正则化相关滤波跟踪算法.该方法考虑目标在空间中的分布特性,利用注意力机制学习目标的特定空间权重,适应目标在空域中的变化;同时利用目标在时域中的连续性,通过对注意力权重矩阵的约束来间接调整滤波器;最后通过交替方向乘子(ADMM)算法迭代优化模型.我们在标准的数据库上进行大量实验,结果表明本文算法能实时跟踪目标,并且在精确度和成功率上都有了一定的提升. 展开更多
关键词 单目标 视觉跟踪 机器学习 正则化 相关滤波 注意力学习
下载PDF
基于多模型蒸馏的时间正则化相关滤波跟踪算法
2
作者 仇祝令 查宇飞 +3 位作者 李振宇 李禹铭 张鹏 朱川 《系统工程与电子技术》 EI CSCD 北大核心 2022年第8期2448-2456,共9页
目前大多数基于相关滤波的跟踪方法是通过对模型采取简单的线性加权融合或是将历史模型作为时间正则化项来约束模型更新的方式,增强滤波器对目标的判别能力,但这种方式对目标时域信息利用有限,容易造成模型退化漂移。本文提出一种基于... 目前大多数基于相关滤波的跟踪方法是通过对模型采取简单的线性加权融合或是将历史模型作为时间正则化项来约束模型更新的方式,增强滤波器对目标的判别能力,但这种方式对目标时域信息利用有限,容易造成模型退化漂移。本文提出一种基于多模型蒸馏的时间正则化相关滤波跟踪算法,该方法通过收集跟踪过程中利用当前样本产生的独立模型,在建立包含背景信息的局部样本库中来指导滤波器更新,以此保留目标在时域中的鲁棒特征。同时,根据每一个模型对当前目标的表征能力不同进行可靠性权值更新。最后,利用交替方向乘子(alternating direction multiplier, ADMM)算法进行模型迭代优化。通过在大量的数据库进行实验,结果表明本文的方法在精确度与成功率上有了大幅提升。 展开更多
关键词 目标跟踪 相关滤波 蒸馏学习 时间正则化
下载PDF
空间可靠性和相关滤波器联合学习的跟踪算法 被引量:2
3
作者 张飞 马时平 +3 位作者 张立朝 何林远 仇祝令 韩永赛 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第5期167-177,共11页
判别式相关滤波器采用循环移位产生负样本的方式不可避免带来了边界效应。基于背景感知的相关滤波跟踪算法试图利用裁剪矩阵获取更多真实的负样本,既有效缓解了边界效应的影响,又增强了对背景信息的学习。然而,裁剪矩阵的使用缺乏对空... 判别式相关滤波器采用循环移位产生负样本的方式不可避免带来了边界效应。基于背景感知的相关滤波跟踪算法试图利用裁剪矩阵获取更多真实的负样本,既有效缓解了边界效应的影响,又增强了对背景信息的学习。然而,裁剪矩阵的使用缺乏对空间不同位置可靠性的学习,可能会导致背景信息对滤波器的学习占据主导地位。为解决该问题,将空间可靠性的学习引入相关滤波算法中,通过交替方向法与滤波器进行联合迭代求解,加强了滤波器对空间可靠性区域的学习,增强了滤波器的对目标与背景的判别力。此外,为优化模型更新策略,提出了一种基于感知哈希算法的自适应模型更新方法,提升了滤波器学习的有效性。所提出的算法在标准视觉跟踪数据集上进行了全面评估,验证了该算法在性能上的有效性以及实时性。 展开更多
关键词 视觉跟踪 相关滤波 空间可靠性 联合学习 感知哈希算法 自适应学习
下载PDF
基于孪生神经网络在线判别特征的视觉跟踪算法 被引量:9
4
作者 仇祝令 查宇飞 +1 位作者 朱鹏 吴敏 《光学学报》 EI CAS CSCD 北大核心 2019年第9期253-261,共9页
基于孪生神经网络的跟踪算法是利用离线训练的网络提取目标的特征并进行匹配,从而实现跟踪。在离线训练过程中,网络学到的是相似目标的通用特征,因此当有相似目标干扰时,用这种通用特征表达特定目标将会导致跟踪性能下降,甚至丢失目标... 基于孪生神经网络的跟踪算法是利用离线训练的网络提取目标的特征并进行匹配,从而实现跟踪。在离线训练过程中,网络学到的是相似目标的通用特征,因此当有相似目标干扰时,用这种通用特征表达特定目标将会导致跟踪性能下降,甚至丢失目标。为提高对相似目标的判别能力,通过在线更新网络参数,使网络能够在通用特征的基础上,进一步学到当前目标的特定特征,这样不仅能有效地区分目标与背景,还能消除相似目标的干扰。实验在OTB50和OTB100数据库上进行,结果表明该算法可以提高对网络提取特征的判别力,实现对目标的稳健性跟踪。 展开更多
关键词 机器视觉 视觉追踪 离线训练 在线更新
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部