为了提高多工况下对滚动轴承的故障辨识能力,本文提出以乘积函数相关熵为故障特征的滚动轴承故障辨识方法,并利用最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)实现自动辨识.首先对预处理的轴承振动信号进行局部均值...为了提高多工况下对滚动轴承的故障辨识能力,本文提出以乘积函数相关熵为故障特征的滚动轴承故障辨识方法,并利用最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)实现自动辨识.首先对预处理的轴承振动信号进行局部均值分解,提取乘积函数(Product Function,PF),然后计算PF与原始信号的皮尔逊积矩相关系数熵,进而根据离散变量相关熵的估计模型得到乘积函数相关熵(Product Function Correntropy,PFC).以PFC为故障特征,结合LSSVM实现滚动轴承的故障识别.多组工况下的滚动轴承状态辨识实验证实了PFC比经典故障特征具有更高的故障辨识效率;另外改变工况参数提取轴承振动数据,验证了PFC-LSSVM方法具有更好的鲁棒辨识能力.综上所述,本文验证了LMD-PFC-LSSVM方法的高效性和实用性,为提高复杂工况下在线故障诊断能力提供了可靠的技术支持,具有广阔的应用前景.展开更多
文摘为了提高多工况下对滚动轴承的故障辨识能力,本文提出以乘积函数相关熵为故障特征的滚动轴承故障辨识方法,并利用最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)实现自动辨识.首先对预处理的轴承振动信号进行局部均值分解,提取乘积函数(Product Function,PF),然后计算PF与原始信号的皮尔逊积矩相关系数熵,进而根据离散变量相关熵的估计模型得到乘积函数相关熵(Product Function Correntropy,PFC).以PFC为故障特征,结合LSSVM实现滚动轴承的故障识别.多组工况下的滚动轴承状态辨识实验证实了PFC比经典故障特征具有更高的故障辨识效率;另外改变工况参数提取轴承振动数据,验证了PFC-LSSVM方法具有更好的鲁棒辨识能力.综上所述,本文验证了LMD-PFC-LSSVM方法的高效性和实用性,为提高复杂工况下在线故障诊断能力提供了可靠的技术支持,具有广阔的应用前景.