期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
面向电商领域的旗袍知识图谱构建与实证研究
1
作者 宋丹 章银萍 +1 位作者 伍洪健 袁理健 《现代电子技术》 北大核心 2024年第8期25-30,共6页
为挖掘旗袍服饰要素的关联关系与隐藏价值,构建一个基于电商数据的细粒度旗袍知识图谱,并开展实证研究。旗袍知识图谱采用自底向上逐层构建的方法,首先根据先验知识设计细粒度本体模型,为后续工作提供逻辑基础;然后采集并预处理原始数据... 为挖掘旗袍服饰要素的关联关系与隐藏价值,构建一个基于电商数据的细粒度旗袍知识图谱,并开展实证研究。旗袍知识图谱采用自底向上逐层构建的方法,首先根据先验知识设计细粒度本体模型,为后续工作提供逻辑基础;然后采集并预处理原始数据,通过知识抽取、知识融合规范化数据,进行实例填充,完成数据层设计;最后将数据存储到图数据库,实现可视化。在此基础上,围绕旗袍、服饰要素以及用户人群开展深度挖掘、知识推理,借助图分析算法在社区检测、相似度和要素关联上展开实证研究。结果表明:旗袍知识图谱蕴含服饰要素之间隐藏的关系,能够挖掘内在的语义信息;旗袍服饰要素和用户人群之间存在一定的知识关联性,进而辅助设计与销售决策。 展开更多
关键词 知识图谱 旗袍 电商数据 细粒度 知识抽取 Neo4j图数据库
下载PDF
基于YOLOv3的布匹瑕疵检测方法
2
作者 伍洪健 邓作杰 +2 位作者 章银萍 张金召 王小康 《湖南工程学院学报(自然科学版)》 2023年第3期39-43,共5页
针对布匹瑕疵差异较大、分布不均匀等问题,在YOLOv3中引入SwinTransformerBlock模块,用自注意力机制专注于有效特征排除无效特征的干扰,解决瑕疵差异大、分布不均等问题.同时用可变形卷积v2替换普通卷积,增大网络的感受野和多尺度建模能... 针对布匹瑕疵差异较大、分布不均匀等问题,在YOLOv3中引入SwinTransformerBlock模块,用自注意力机制专注于有效特征排除无效特征的干扰,解决瑕疵差异大、分布不均等问题.同时用可变形卷积v2替换普通卷积,增大网络的感受野和多尺度建模能力,更好地适应瑕疵的形状和位置变化,从而提高目标检测的准确性和鲁棒性.实验结果表明,改进后算法在mAP上比原算法提高了3.80%,在检测速度上下降了2.86帧每秒. 展开更多
关键词 布匹瑕疵检测 目标检测 SwinTransformerBlock 可变形卷积v2
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部