The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topol...The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.展开更多
Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstan...Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves(SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation.This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods.展开更多
The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic...The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic null region.The magnetic null configuration experiment reported here is set up in a linear helicon plasma device,Peking University plasma test device(PPT).The wave modes with frequencies between the first and third harmonics of local ion cyclotron frequency(w_(ci))are observed in the separatrix of magnetic null,which are identified as the IBW based on the dispersion relation.Further analysis shows that IBW could drive substantial particle flux across the magnetic separatrix.The theoretical radial particle flux driven by IBW and the measured parallel flow in PPT device are almost on the same order,which shows that IBW may play an important role during 3D reconnection process.展开更多
基金supported by National Natural Science Foundation of China(No.11975038)the National Key Research and Development Program of China(No.2022YFA1604600)。
文摘The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
基金supported by the National Key R&D Program of China(No.2017YFE0301201)National Natural Science Foundation of China(No.11975038)the funding support from the State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2021ZZ03)。
文摘Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves(SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation.This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods.
基金supported by National Natural Science Foundation of China(No.11975038)the National MCF Energy R&D Program of China(Nos.2017YFE0300601 and 2018YFE0311400).
文摘The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic null region.The magnetic null configuration experiment reported here is set up in a linear helicon plasma device,Peking University plasma test device(PPT).The wave modes with frequencies between the first and third harmonics of local ion cyclotron frequency(w_(ci))are observed in the separatrix of magnetic null,which are identified as the IBW based on the dispersion relation.Further analysis shows that IBW could drive substantial particle flux across the magnetic separatrix.The theoretical radial particle flux driven by IBW and the measured parallel flow in PPT device are almost on the same order,which shows that IBW may play an important role during 3D reconnection process.