采用电沉积法在硫酸铜加乳酸的体系下制备氧化亚铜(Cu_(2)O)薄膜催化剂,通过不同电极基底探究了其空间结构及化学组成对电催化反应性能的影响。在此基础上,利用泡沫铜三维多孔结构及Cu-Cu_(2)O协同作用制备了Cu_(2)O薄膜催化电极(Cu-foa...采用电沉积法在硫酸铜加乳酸的体系下制备氧化亚铜(Cu_(2)O)薄膜催化剂,通过不同电极基底探究了其空间结构及化学组成对电催化反应性能的影响。在此基础上,利用泡沫铜三维多孔结构及Cu-Cu_(2)O协同作用制备了Cu_(2)O薄膜催化电极(Cu-foam@Cu_(2)O-film),提高Cu_(2)O对醇类产物的选择性和催化剂稳定性。结果表明,在0.5 mol/L KHCO_(3)电解液及-0.9 V vs.Ag/AgCl电位下,醇类总法拉第效率为33.2%,相比于传统碳纸基底电极(Carbon@Cu_(2)O-film)提高了近3倍。展开更多
以超声波均质作为技术手段,乳清分离蛋白(whey protein isolate,WPI)和乳糖(D-lactose,Lac)的糖基化反应产物(WPI-Lac)为水相,茶油为油相,通过超声波均质法制备由糖基化反应产物稳定的茶油纳米乳液,优化了pH、油相质量分数、超声波功率...以超声波均质作为技术手段,乳清分离蛋白(whey protein isolate,WPI)和乳糖(D-lactose,Lac)的糖基化反应产物(WPI-Lac)为水相,茶油为油相,通过超声波均质法制备由糖基化反应产物稳定的茶油纳米乳液,优化了pH、油相质量分数、超声波功率、超声波时间,研究了温度和pH对乳液储藏稳定性和氧化稳定性的影响。结果表明,在水相pH为7.0,油相分数为10%,超声波功率为450 W,超声波处理时间为10 min时可制备出粒径为(206.2±1.572)nm和多分散性指数为(0.136±0.109)的均匀纳米乳液。为期15 d的贮存中,超声波处理糖基化蛋白(ultrasonic whey protein isolate glycosylated,UWPIL)-茶油纳米乳液的过氧化值及次级氧化产物的浓度显著低于超声波处理蛋白(ultrasonic whey protein isolate,UWPI)稳定的茶油纳米乳液,并维持在低水平,基于超声波均质处理,使用乳糖改性后的WPI为乳化剂,使包裹的乳液更稳定,并有效减缓了茶油的氧化。展开更多
通过碱法制备乳清分离蛋白(whey protein isolate,WPI)-单宁酸(tannic acid,TA)纳米颗粒,以粒径和电位为评价指标考察WPI与TA的复合比例对WPI-TA纳米颗粒形成的影响。接着选择最佳复合比例的WPI-TA纳米颗粒作为乳化剂,采用简单的剪切诱...通过碱法制备乳清分离蛋白(whey protein isolate,WPI)-单宁酸(tannic acid,TA)纳米颗粒,以粒径和电位为评价指标考察WPI与TA的复合比例对WPI-TA纳米颗粒形成的影响。接着选择最佳复合比例的WPI-TA纳米颗粒作为乳化剂,采用简单的剪切诱导乳化技术制备稻米油Pickering乳液,考察WPI与TA的相互作用对稻米油Pickering乳液的热稳定性、盐离子稳定性以及氧化稳定性的影响,探究Pickering乳液的稳定性机理。结果表明:WPI与TA的复合比例影响WPI-TA纳米颗粒的形成与稳定,傅里叶变换红外光谱表明WPI与TA之间的相互作用引起蛋白质二级结构的变化,TA的引入显著提高WPI-TA纳米颗粒的乳化活性,改善了Pickering乳液对温度和离子强度的稳定性,同时抑制了乳液在贮藏过程中一级和二级氧化物的生成。因此,WPI-TA纳米颗粒有望成为一种具有潜在优势的Pickering乳液稳定剂。展开更多
文摘采用电沉积法在硫酸铜加乳酸的体系下制备氧化亚铜(Cu_(2)O)薄膜催化剂,通过不同电极基底探究了其空间结构及化学组成对电催化反应性能的影响。在此基础上,利用泡沫铜三维多孔结构及Cu-Cu_(2)O协同作用制备了Cu_(2)O薄膜催化电极(Cu-foam@Cu_(2)O-film),提高Cu_(2)O对醇类产物的选择性和催化剂稳定性。结果表明,在0.5 mol/L KHCO_(3)电解液及-0.9 V vs.Ag/AgCl电位下,醇类总法拉第效率为33.2%,相比于传统碳纸基底电极(Carbon@Cu_(2)O-film)提高了近3倍。
文摘以超声波均质作为技术手段,乳清分离蛋白(whey protein isolate,WPI)和乳糖(D-lactose,Lac)的糖基化反应产物(WPI-Lac)为水相,茶油为油相,通过超声波均质法制备由糖基化反应产物稳定的茶油纳米乳液,优化了pH、油相质量分数、超声波功率、超声波时间,研究了温度和pH对乳液储藏稳定性和氧化稳定性的影响。结果表明,在水相pH为7.0,油相分数为10%,超声波功率为450 W,超声波处理时间为10 min时可制备出粒径为(206.2±1.572)nm和多分散性指数为(0.136±0.109)的均匀纳米乳液。为期15 d的贮存中,超声波处理糖基化蛋白(ultrasonic whey protein isolate glycosylated,UWPIL)-茶油纳米乳液的过氧化值及次级氧化产物的浓度显著低于超声波处理蛋白(ultrasonic whey protein isolate,UWPI)稳定的茶油纳米乳液,并维持在低水平,基于超声波均质处理,使用乳糖改性后的WPI为乳化剂,使包裹的乳液更稳定,并有效减缓了茶油的氧化。
文摘通过碱法制备乳清分离蛋白(whey protein isolate,WPI)-单宁酸(tannic acid,TA)纳米颗粒,以粒径和电位为评价指标考察WPI与TA的复合比例对WPI-TA纳米颗粒形成的影响。接着选择最佳复合比例的WPI-TA纳米颗粒作为乳化剂,采用简单的剪切诱导乳化技术制备稻米油Pickering乳液,考察WPI与TA的相互作用对稻米油Pickering乳液的热稳定性、盐离子稳定性以及氧化稳定性的影响,探究Pickering乳液的稳定性机理。结果表明:WPI与TA的复合比例影响WPI-TA纳米颗粒的形成与稳定,傅里叶变换红外光谱表明WPI与TA之间的相互作用引起蛋白质二级结构的变化,TA的引入显著提高WPI-TA纳米颗粒的乳化活性,改善了Pickering乳液对温度和离子强度的稳定性,同时抑制了乳液在贮藏过程中一级和二级氧化物的生成。因此,WPI-TA纳米颗粒有望成为一种具有潜在优势的Pickering乳液稳定剂。