目的在影像归档和通信系统(Picture Archiving and Communication System,PACS)数据库文件丢失或损坏后,实现影像资料和PDF报告关键信息的快速识别和重组,供患者回诊使用。方法利用基于深度学习的光学字符识别技术和Pydicom技术分别读取...目的在影像归档和通信系统(Picture Archiving and Communication System,PACS)数据库文件丢失或损坏后,实现影像资料和PDF报告关键信息的快速识别和重组,供患者回诊使用。方法利用基于深度学习的光学字符识别技术和Pydicom技术分别读取PDF和DCOM文件中的基本信息,重新建立起患者、影像、报告三者之间的联系,并将关联数据写入数据库。结果经抽样验证,该方法识别同类图像精度的准确度、精准度及召回率均为100%,综合指标F1值为1,在不同组别独立样本间的识别精度表现出一致性。平均每份报告识别时间约为0.14 s(t=-1.005,P=0.315),说明不同组别独立样本间的识别时间表现出一致性。结论该方法的使用能有效缩短数据库故障后患者等待时长,能够在短时间内恢复医疗秩序,可用于PACS数据库数据丢失后的应急处置,也为PACS的数据整合提供依据,为医学影像数据恢复和数据整合提供一种新思路。展开更多
文摘目的在影像归档和通信系统(Picture Archiving and Communication System,PACS)数据库文件丢失或损坏后,实现影像资料和PDF报告关键信息的快速识别和重组,供患者回诊使用。方法利用基于深度学习的光学字符识别技术和Pydicom技术分别读取PDF和DCOM文件中的基本信息,重新建立起患者、影像、报告三者之间的联系,并将关联数据写入数据库。结果经抽样验证,该方法识别同类图像精度的准确度、精准度及召回率均为100%,综合指标F1值为1,在不同组别独立样本间的识别精度表现出一致性。平均每份报告识别时间约为0.14 s(t=-1.005,P=0.315),说明不同组别独立样本间的识别时间表现出一致性。结论该方法的使用能有效缩短数据库故障后患者等待时长,能够在短时间内恢复医疗秩序,可用于PACS数据库数据丢失后的应急处置,也为PACS的数据整合提供依据,为医学影像数据恢复和数据整合提供一种新思路。