New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer Si O2/Zn O: Al/Ce O2-Ti O2/Si O2 films onto glass substrates at low temperature by radio freq...New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer Si O2/Zn O: Al/Ce O2-Ti O2/Si O2 films onto glass substrates at low temperature by radio frequency magnetron sputtering. Optimum thickness of Si O2, Zn O: Al(ZAO) and Ce O2-Ti O2(CTO) films were designed with the aid of thin film design software. The degree of antireflection can be controlled by adjusting the thickness and refractive index. The outer Si O2 film can diminish the interference coloring and increase the transparency; the inner Si O2 film improves the adhesion of the coating on the glass substrate and prevents Ca2+, Na+ in the glass substrate from entering the ZAO film. The average transmittance in the visible light range increases by nearly 18%-20%, as compared to double layer ZAO/CTO films. And the films display high infrared reflection rate of above 75% in the wavelength range of 10-25 μm and good UV absorption(> 98%) properties. These systems are easy to produce on a large scale at low cost and exhibit high mechanical and chemical durability. The triple functional films with high UV absorption, antireflective and high infrared reflection rate will adapt to application in flat panel display and architectural coating glass, automotive glass, with diminishing light pollution as well as decreasing eye fatigue and increasing comfort.展开更多
60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin ...60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin film with the largest UV cut-off wavelength. The sample films with CeO2:TiO2=60:40 were heated at 773 K, 873 K, 973 K for 30 min. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy and spectrometer (XPS). XRD analysis proves that the addition of TiO2 to CeO2 changed the crystalline state of CeO2. But the UV absorption effect of CeO2-TiO2 films with CeO2 crystallite phase is inferior to that of the amorphous phase CeO2-TiO2 films. XPS analysis also indicates that the amorphous phase CeO2-TiO2 films have the most Ce3+ content in these films. Amorphous phase and crystalline phase of the CeO2-TiO2 films have different effects on UV absorption of the thin films.展开更多
基金Funded by the Natural Science Foundation of Hubei Province(No.2014CFB563)the key Technology Innovation Project of Hubei Province(No.2013AAA005)China Postdoctoral Science Foundation(Nos.2013T60752 and 2012M511689)
文摘New visible transparent, UV absorption, and high infrared reflection properties have been realized by depositing multilayer Si O2/Zn O: Al/Ce O2-Ti O2/Si O2 films onto glass substrates at low temperature by radio frequency magnetron sputtering. Optimum thickness of Si O2, Zn O: Al(ZAO) and Ce O2-Ti O2(CTO) films were designed with the aid of thin film design software. The degree of antireflection can be controlled by adjusting the thickness and refractive index. The outer Si O2 film can diminish the interference coloring and increase the transparency; the inner Si O2 film improves the adhesion of the coating on the glass substrate and prevents Ca2+, Na+ in the glass substrate from entering the ZAO film. The average transmittance in the visible light range increases by nearly 18%-20%, as compared to double layer ZAO/CTO films. And the films display high infrared reflection rate of above 75% in the wavelength range of 10-25 μm and good UV absorption(> 98%) properties. These systems are easy to produce on a large scale at low cost and exhibit high mechanical and chemical durability. The triple functional films with high UV absorption, antireflective and high infrared reflection rate will adapt to application in flat panel display and architectural coating glass, automotive glass, with diminishing light pollution as well as decreasing eye fatigue and increasing comfort.
基金the National Natural Science Foundation of China(No.51032005)the Fundamental Research Funds for the Central Universities(Wuhan University of Technology)+1 种基金the China Postdoctoral Science Foundation(No.2012M511285)the Fund for the Young Innovative Team(Hubei University of Education)(No.2012KQ05)
文摘60CeO2-40TiO2 thin films were deposited on soda-lime silicate glass substrates by R.F. magnetron sputtering. The effects of heat-treatment on the UV-absorption of the thin films were studied on the 60CeO2-40TiO2 thin film with the largest UV cut-off wavelength. The sample films with CeO2:TiO2=60:40 were heated at 773 K, 873 K, 973 K for 30 min. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy and spectrometer (XPS). XRD analysis proves that the addition of TiO2 to CeO2 changed the crystalline state of CeO2. But the UV absorption effect of CeO2-TiO2 films with CeO2 crystallite phase is inferior to that of the amorphous phase CeO2-TiO2 films. XPS analysis also indicates that the amorphous phase CeO2-TiO2 films have the most Ce3+ content in these films. Amorphous phase and crystalline phase of the CeO2-TiO2 films have different effects on UV absorption of the thin films.