By 355 nm laser ablating a composite target prepared from metallic lithium and ZnO in high vaccum, a new hypermetallic oxide LiZnO + ion, which consists of two heterometal atoms and oxygen atom, was observed by using ...By 355 nm laser ablating a composite target prepared from metallic lithium and ZnO in high vaccum, a new hypermetallic oxide LiZnO + ion, which consists of two heterometal atoms and oxygen atom, was observed by using a time of flight mass spectrometer for the first time. The time of flight positive ion mass spectra at different delay time between the accelerated electric field and laser pulse are investigated. It shows that the formation of LiOZn + depends on the delay time, and the hypervalent ion LiOZn + is observed obviously at the delay time from 7.5 to 17.5 μs. These results suggest that the ion molecular reaction between the ablated Li + ions and ZnO in the laser plasma should be responsible for the formation of hypermetallic LiZnO +.展开更多
LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Ra...LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scarming electron microscopy (SEM) techniques. It was shown that the 700 ℃- annealed LiCo0.8M0.2O2 has an α-NaFeO2 like layered structure. All-solid-state thin-film batteries (TFBs) were fabrieated with these films as the cathode and their eleetroctemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and elcctrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.展开更多
文摘By 355 nm laser ablating a composite target prepared from metallic lithium and ZnO in high vaccum, a new hypermetallic oxide LiZnO + ion, which consists of two heterometal atoms and oxygen atom, was observed by using a time of flight mass spectrometer for the first time. The time of flight positive ion mass spectra at different delay time between the accelerated electric field and laser pulse are investigated. It shows that the formation of LiOZn + depends on the delay time, and the hypervalent ion LiOZn + is observed obviously at the delay time from 7.5 to 17.5 μs. These results suggest that the ion molecular reaction between the ablated Li + ions and ZnO in the laser plasma should be responsible for the formation of hypermetallic LiZnO +.
基金supported Science Foundation of China by the National Natural(No.20203006).
文摘LiCo0.8M0.2O2 (M=Ni,Zr) films were fabricated by radio frequency sputtering deposition combined with conventional annealing methods. The strtuctures of the films were characterized with X-ray diffraction (XRD), Raman spectroscopy and scarming electron microscopy (SEM) techniques. It was shown that the 700 ℃- annealed LiCo0.8M0.2O2 has an α-NaFeO2 like layered structure. All-solid-state thin-film batteries (TFBs) were fabrieated with these films as the cathode and their eleetroctemical performances were evaluated. It was found that doping of electrochemically active Ni and inactive Zr has different effects on the structural and elcctrochemical properties of the LiCoO2 cathode films. Ni doping increases the discharge capacity of the film while Zr doping improves its cycling stability.