We performed extensive quasiclassical trajectory calculations for the H+C_(2)D_(2)→HD+C_(2)D/D_(2)+C_(2)H reaction based on a recently developed,global and accurate potential energy surface by the fundamental-invaria...We performed extensive quasiclassical trajectory calculations for the H+C_(2)D_(2)→HD+C_(2)D/D_(2)+C_(2)H reaction based on a recently developed,global and accurate potential energy surface by the fundamental-invariant neural network method.The direct abstraction pathway plays a minor role in the overall reactivity,which can be negligible as compared with the roaming pathways.The acetylenefacilitated roaming pathway dominates the reactivity,with very small contributions from the vinylidene-facilitated roaming.Although the roaming pathways proceed via the short-lived or long-lived complex forming process,the computed branching ratio of product HD to D_(2) is not far away from 2:1,implying roaming dynamics for this reaction is mainly contributed from the long-lived complex-forming process.The resulting angular distributions for the two product channels are also quite different.These computational results give valuable insights into the significance and isotope effects of roaming dynamics in the biomolecular reactions.展开更多
The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactiv...The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactivity on the Fe(111)surface,based on a recently developed six-dimensional potential energy surface.Six-dimensional quantum dynamics study was carried out to investi-gate the effect of vibrational excitation for incidence energy below 1.6 eV,due to sig-nificant quantum effects for this reaction.The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations.We found that raising the translational energy can enhance the dissociation probability to some extent,however,the vibrational excitation or rotational excitation can promote disso-ciation more efficiently than the same amount of translational energy.This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction.展开更多
The atom-atom-anion three-body recombination(TBR)and collision induced dissociation(CID)processes of the^(3)He-^(3)He-T^(-)system at ultracold temperatures are investigated by solving the Schr¨odinger equation in...The atom-atom-anion three-body recombination(TBR)and collision induced dissociation(CID)processes of the^(3)He-^(3)He-T^(-)system at ultracold temperatures are investigated by solving the Schr¨odinger equation in the adiabatic hyperspherical representation.The variations of the TBR and CID rates with the collision energies in the ultracold temperatures are obtained.It is found that the J~Π=1~-symmetry dominates the TBR and CID processes in most of the considered collision energy range.The rate of TBR(CID)into(from)the l=1 anion is larger than those for the l=0 and l=2 anions,with the l representing the rotational quantum number of~3HeT~-.This can be understood via the nonadiabatic couplings among the different channels.展开更多
基金supported by the National Natural Science Foundation of China(No.22125302,No.22173099,No.22288201,No.21873089,and No.21973037)the Guangdong Science and Technology Program(No.2019ZT08L455 and No.2019JC01X091)the Shenzhen Science and Technology Program(No.ZDSYS20200421111001787).
基金supported by the National Natural Science Foundation of China(No.22173099 and No.12174044)Liao Ning Revitalization Talents Program(XLYC1907190)。
文摘We performed extensive quasiclassical trajectory calculations for the H+C_(2)D_(2)→HD+C_(2)D/D_(2)+C_(2)H reaction based on a recently developed,global and accurate potential energy surface by the fundamental-invariant neural network method.The direct abstraction pathway plays a minor role in the overall reactivity,which can be negligible as compared with the roaming pathways.The acetylenefacilitated roaming pathway dominates the reactivity,with very small contributions from the vinylidene-facilitated roaming.Although the roaming pathways proceed via the short-lived or long-lived complex forming process,the computed branching ratio of product HD to D_(2) is not far away from 2:1,implying roaming dynamics for this reaction is mainly contributed from the long-lived complex-forming process.The resulting angular distributions for the two product channels are also quite different.These computational results give valuable insights into the significance and isotope effects of roaming dynamics in the biomolecular reactions.
基金supported by the National Key R&D Program of China(No.2018YFE0203003)the National Natural Science Foundation of China(No.22173099 and No.22173101)the Liaoning Revitalization Talents Program(No.XLYC1907190)。
文摘The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactivity on the Fe(111)surface,based on a recently developed six-dimensional potential energy surface.Six-dimensional quantum dynamics study was carried out to investi-gate the effect of vibrational excitation for incidence energy below 1.6 eV,due to sig-nificant quantum effects for this reaction.The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations.We found that raising the translational energy can enhance the dissociation probability to some extent,however,the vibrational excitation or rotational excitation can promote disso-ciation more efficiently than the same amount of translational energy.This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0306503)the National Natural Science Foundation of China(Grant Nos.21873016,12174044,and 22103063)+1 种基金the International Cooperation Fund Project of DBJI(Grant No.ICR2105)the Fundamental Research Funds for the Central Universities(Grant No.DUT21LK08)。
文摘The atom-atom-anion three-body recombination(TBR)and collision induced dissociation(CID)processes of the^(3)He-^(3)He-T^(-)system at ultracold temperatures are investigated by solving the Schr¨odinger equation in the adiabatic hyperspherical representation.The variations of the TBR and CID rates with the collision energies in the ultracold temperatures are obtained.It is found that the J~Π=1~-symmetry dominates the TBR and CID processes in most of the considered collision energy range.The rate of TBR(CID)into(from)the l=1 anion is larger than those for the l=0 and l=2 anions,with the l representing the rotational quantum number of~3HeT~-.This can be understood via the nonadiabatic couplings among the different channels.