期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于地理加权随机森林的黑龙江省森林碳储量遥感估测
1
作者 卫格冉 李明泽 +3 位作者 全迎 王斌 刘建阳 明烺 《中南林业科技大学学报》 CAS CSCD 北大核心 2024年第7期64-76,共13页
【目的】构建地理加权随机森林(Geographically weighted random forest,GWRF)模型估算森林碳储量以解决区域尺度范围内森林碳储量估算精度不高的问题,对科学经营管理森林、推动碳循环和碳汇相关研究、实现我国“双碳”目标有重要指导... 【目的】构建地理加权随机森林(Geographically weighted random forest,GWRF)模型估算森林碳储量以解决区域尺度范围内森林碳储量估算精度不高的问题,对科学经营管理森林、推动碳循环和碳汇相关研究、实现我国“双碳”目标有重要指导意义。【方法】以黑龙江省小兴安岭、长白山地区森林植被碳储量为研究对象,基于2015年森林资源连续清查数据和Landsat8-OLI影像,采用普通最小二乘(Ordinary least squares,OLS)、随机森林(Random forest,RF)模型、地理加权回归(Geographically weighted regression,GWR)模型以及地理加权随机森林模型分别构建不同林型及总体(不分林型)的森林碳储量估测模型,比较是否区分林分类型时,不同模型预测精度之间的差异,实现对研究区森林碳储量的精准反演。【结果】1)各个模型在区分林型时的预测精度均高于总体(不分林型)情况,以GWRF模型精度最优,其中针叶林精度最高(R^(2)=0.58,RMSE=15.97 t/hm^(2));阔叶林次之(R^(2)=0.46,RMSE=17.66 t/hm^(2));针阔混交林随后(R^(2)=0.45,RMSE=19.51 t/hm^(2));总体(不分林型)最低(R^(2)=0.40,RMSE=20.22 t/hm^(2))。2)4种模型的检验精度GWRF>RF>GWR>OLS。与OLS相比,GWRF在针叶林、阔叶林、针阔混交林和总体(不分林型)中提升的ΔR^(2)分别为0.15、0.09、0.16和0.04;降低的ΔRMSE分别为2.09、1.35、3.47和0.89 t/hm^(2);与RF相比,GWRF提升的ΔR^(2)分别为针叶林0.14、阔叶林0.06、针阔混交林0.04、总体(不分林型)0.02;降低的ΔRMSE分别为针叶林1.95 t/hm^(2)、阔叶林0.86 t/hm^(2)、针阔混交林0.67 t/hm^(2)、总体(不分林型)0.29 t/hm^(2)。3)研究区森林碳储量密度最高预测值为77.08 t/hm^(2),最低值为5.24 t/hm^(2),平均值为41.07 t/hm^(2),总量为552.04 Tg;从空间上看,森林碳储量高值分布在小兴安岭东南部、张广财岭等地区,呈现斑状不均匀性分布。【结论】相比于其他3种模型,GWRF作为局部模型,考虑到空间异质性,在区域尺度范围内估测森林碳储量有较好的应用前景。区分林分类型能提高预测精度,在今后对森林生物量或碳储量的研究中,应考虑区分林分类型建模。本研究的模型和方法有一定适应性,可为森林资源的快速和精准监测提供方法借鉴。 展开更多
关键词 森林碳储量 地理加权随机森林 地理加权回归 随机森林 遥感估测
下载PDF
运用无人机激光雷达数据提取落叶松树冠特征因子及树冠轮廓模拟 被引量:15
2
作者 全迎 李明泽 +1 位作者 甄贞 郝元朔 《东北林业大学学报》 CAS CSCD 北大核心 2019年第11期52-58,共7页
为探究无人机激光雷达(UAVLS)获取单木树冠三维结构的能力,利用无人机载激光雷达数据,对人工长白落叶松进行单木树冠特征因子的提取以及树冠轮廓的模拟,并与机载激光雷达(ALS)单木树冠特征因子的提取进行比较。结果表明:利用UAVLS数据1... 为探究无人机激光雷达(UAVLS)获取单木树冠三维结构的能力,利用无人机载激光雷达数据,对人工长白落叶松进行单木树冠特征因子的提取以及树冠轮廓的模拟,并与机载激光雷达(ALS)单木树冠特征因子的提取进行比较。结果表明:利用UAVLS数据1∶1匹配的单木数量远高于利用ALS数据匹配的单木数量,且UAVLS单木位置探测的精度达到0.338 1 m,比ALS提高了0.185 1 m;UAVLS单木树高的提取精度达到0.578 5 m,比ALS提高了1.294 5 m;对于冠幅及冠基高的提取,UAVLS也有更高的精度。与ALS相比,UAVLS不仅具有更高的单木探测精度,也具有更高的单木树冠结构参数提取精度;3种树冠轮廓模型拟合的R^2均高于0.75,表明3种常用的轮廓模型都能够很好的描述从UAVLS数据中获取的树冠外部轮廓,其中二次抛物线模型具有最强的模拟效果(MAE=0.256 4,MRAE=4.59%)。因此,无人机激光雷达数据提取单木树冠结构,可以提高林业调查的效率。 展开更多
关键词 无人机 激光雷达 树冠特征因子 树冠 长白落叶松
下载PDF
基于高光谱和激光雷达数据的林分类型识别 被引量:6
3
作者 由珈齐 李明泽 +4 位作者 范文义 全迎 王斌 莫祝坤 祝子枭 《林业科学》 EI CAS CSCD 北大核心 2021年第5期119-129,共11页
【目的】探讨随机森林、支持向量机分类器下机载高光谱影像和激光雷达点云数据源对林分类型识别的影响,并检验叶绿素在林分类型识别中的作用,为提高林分类型分类精度提供科学依据,为森林资源管理和监测提供技术支持。【方法】以东北林... 【目的】探讨随机森林、支持向量机分类器下机载高光谱影像和激光雷达点云数据源对林分类型识别的影响,并检验叶绿素在林分类型识别中的作用,为提高林分类型分类精度提供科学依据,为森林资源管理和监测提供技术支持。【方法】以东北林业大学帽儿山实验林场老山施业区为研究区,以机载高光谱影像和激光雷达点云为数据源,在多尺度影像分割基础上,从高光谱影像中提取光谱、纹理和叶绿素指数等特征,从LiDAR点云中提取高度、强度等特征。通过随机森林的特征选择,选取重要性较高的特征变量,在随机森林和支持向量机分类器下,以影像分割数据为试验样本,设置6种分类方案(随机森林分类器下高光谱影像与激光雷达点云数据结合、高光谱影像数据、激光雷达点云数据,支持向量机分类器下高光谱影像与激光雷达点云数据结合、高光谱影像数据、激光雷达点云数据),对阔叶混交林、樟子松林、落叶松林、红松林和蒙古栎林5种林分类型进行识别,比较不同分类器下不同数据源的分类效果。【结果】高光谱影像数据共提取34个特征变量,激光雷达点云数据共提取72个特征变量,经特征选择后,高光谱影像数据和激光雷达点云数据各选取11个重要性较高的特征(共22个),其中高光谱影像数据提取的归一化植被指数(NDVI)重要性最大。6种分类方案中,随机森林分类器下高光谱影像与激光雷达点云数据结合的分类精度最高(88.02%),支持向量机分类器下激光雷达点云数据的分类精度最低(76.19%)。多源数据协同的平均分类精度(86.22%)高于单源数据(79.98%),随机森林分类器的平均分类精度(82.92%)高于支持向量机分类器(81.19%)。叶绿素指数参与分类后,分类精度提高约3.32%。5种林分类型中,阔叶混交林分类效果最好,平均分类精度为92.62%,红松林分类效果最差,平均分类精度为49.67%。【结论】多数据源较单源数据可更好地提高分类精度,即2种数据协同可以提高林分类型识别精度;单一数据源相比,高光谱影像数据源的分类效果更好,光谱特征是林分类型识别的重要影响因子;林分类型识别时,不同机器学习模型相比,随机森林分类器较支持向量机分类器分类效果更优;叶绿素作为生物化学参数对林分类型识别有积极影响。 展开更多
关键词 高光谱 激光雷达 叶绿素 特征选择 随机森林 支持向量机
下载PDF
无人机激光雷达与高光谱数据协同的帽儿山地区树种分类 被引量:4
4
作者 李佳柠 李明泽 +2 位作者 全迎 王斌 莫祝坤 《东北林业大学学报》 CAS CSCD 北大核心 2022年第6期63-69,116,共8页
应用无人机激光雷达和机载高光谱数据,通过设计多种分类方案探索不同数据源、不同分类器以及树冠形态特征对单木树种分类的影响。研究结果表明:使用多源遥感数据协同进行单木树种分类时,分类精度高于单一数据源的分类结果。从分类器上看... 应用无人机激光雷达和机载高光谱数据,通过设计多种分类方案探索不同数据源、不同分类器以及树冠形态特征对单木树种分类的影响。研究结果表明:使用多源遥感数据协同进行单木树种分类时,分类精度高于单一数据源的分类结果。从分类器上看,随机森林分类器的分类精度高于BP神经网络分类器。在将树冠形态特征加入分类器后,分类精度平均提高了1.19%,表明树冠形态特征的加入对单木树种分类具有一定积极意义。 展开更多
关键词 无人机 树种分类 高光谱 激光雷达
下载PDF
实施积极财政政策中值得注意的几个关系问题
5
作者 全迎 《江西财税与会计》 北大核心 1999年第10期48-48,共1页
关键词 积极财政政策 积极的财政政策 几个关系问题 值得注意 财政政策与货币政策 财政资金 建设项目 投资效益 货币政策协调 财政收入占GDP的比重
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部