为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入Gho...为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入GhostNet网络中的Ghost模块和Ghost BottleNeck结构。同时,为避免生姜叶片病虫害图像小目标特征丢失的情况,增强图像特征提取,加入CA注意力机制模块,提升生姜叶片病虫害的识别准确率和定位精确度。改进后的模型参数量、计算量和权重文件大小分别为YOLOv5s模型的52.0%、50.6%和55.2%,对生姜叶片病虫害识别平均精度均值达到了83.8%。与Faster-RCNN、SSD、YOLOv4、YOLOv5s、Tea-YOLOv5s等算法相比,平均精度均值分别提高37.6、39.1、22.5、1.5、0.7个百分点,将改进后的目标检测模型部署在Jetson Orin NX开发板上,并使用TensorRT、Int8量化和CUDA等方法对检测模型加速,加速后的模型检测速度为74.3帧/s,满足实时检测的要求,测试结果显示,改进后的模型减少了漏检、误检的情况,并且对目标定位更加精准,适用于自然环境下生姜叶片病虫害的精准识别,为后续生姜机械自动化施药作业提供技术理论支持。展开更多
小白菜是中国种植面积较广、深受大众喜爱的蔬菜,真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YO...小白菜是中国种植面积较广、深受大众喜爱的蔬菜,真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YOLOPC(YOLO for Pak Choi)小白菜虫害识别模型。首先,引入CBAM(convolutional block attention module)注意力机制,将其放在CBS(卷积层Convolution+归一化层Batch normalization+激活函数层SILU)的输入端构成CBAM-CBS的结构,动态调整特征图中各个通道和空间位置的权重;使用上采样和1×1卷积操作来调整特征图的尺寸和通道数,实现不同层次特征的融合,增强模型的特征表示能力。同时,改进损失函数,使其更适合边界框回归的准确性需求;利用空洞卷积的优势提高网络的感受野范围,使模型能够更好地理解图像的上下文信息。试验结果表明,与改进前的YOLOv5s模型相比,YOLOPC模型对小白菜小菜蛾和潜叶蝇虫害检测的平均精度均值(mean average precision, mAP)达到91.4%,提高了12.9%;每秒传输帧数(Frame Per Second, FPS)为58.82帧/s,增加了11.2帧/s,增加幅度达23.53%;参数量仅为14.4 M,降低了25.78%。与经典的目标检测算法SSD、Faster R-CNN、YOLOv3、YOLOv7和YOLOv8相比,YOLOPC模型的平均精度均值分别高出20.1%、24.6%、14%、13.4%和13.3%,此外,其准确率、召回率、帧速率和参数量均展现出显著优势。该模型可为复杂背景下小白菜虫害的快速准确检测提供技术支持。展开更多
无人机补播是草地修复的有效手段之一。针对无人机作业过程中,空斑定位精度不高导致的效率低下、工作量大等问题,该研究提出一种基于无人机图像超分辨率重建和Transformer的退化草地空斑定位方法YOLOFG(YOLO for Gap)。首先基于YOLOv5s...无人机补播是草地修复的有效手段之一。针对无人机作业过程中,空斑定位精度不高导致的效率低下、工作量大等问题,该研究提出一种基于无人机图像超分辨率重建和Transformer的退化草地空斑定位方法YOLOFG(YOLO for Gap)。首先基于YOLOv5s网络框架,在模型颈部设计联级特征纹理选择模块,强化模型特征纹理细节聚焦力,解决无人机空斑影像尺度变化大、纹理模糊问题;其次,以ShuffleNetV2构建主干网络,嵌入信息交互Transformer自注意力结构,提取像素间更多差异化特征,以提升模型对空斑边缘像素的精确捕获能力;最后,基于空斑锚框信息建立无人机位姿信息和空间平面的成像模型,实现目标空斑的精准定位。试验结果表明,YOLOFG模型平均精度均值为96.57%,相较于原始YOLOv5s模型提升3.84个百分点;参数量约为6.24 M,比原始模型降低约11.2%。与YOLOv4、YOLOv7、YOLOv8模型相比,检测精度分别提高11.86、9.65、6.82个百分点。空斑定位的平均误差为0.4404 m,满足无人机作业对草地空斑精准定位的需求,可为开展退化草地植被恢复与重建工作提供技术支持。展开更多
为了探究电极材料对静电喷嘴雾化效果和荷电性能的影响,确定设计的静电喷嘴的最佳作业参数,并明确静电作用对雾滴沉积效果的影响,以电极材料、电极电压、喷施压力和喷孔直径为喷施变量,针对设计的静电喷嘴进行室内雾化和沉积试验。研究...为了探究电极材料对静电喷嘴雾化效果和荷电性能的影响,确定设计的静电喷嘴的最佳作业参数,并明确静电作用对雾滴沉积效果的影响,以电极材料、电极电压、喷施压力和喷孔直径为喷施变量,针对设计的静电喷嘴进行室内雾化和沉积试验。研究结果表明:设计的静电喷嘴最佳电极电压为8 k V,最佳电极材料为紫铜,最佳喷施压力为170 k Pa;相比于非静电喷雾,静电作用开启后,静电喷嘴的有效喷幅增加约50 cm;在3个采样层的雾滴沉积密度依次增加了23、19、10个/cm2;在喷嘴雾化的所有雾滴中,粒径在50~120μm区间的雾滴受静电作用影响最大,静电作用开启后,此区间段内的雾滴沉积数量增加了约2倍,当雾滴粒径大于120μm时,雾滴沉积密度随雾滴粒径的增大呈下降趋势;沉积的雾滴主要是粒径在180μm以下的雾滴,因此适合最佳生物粒径为180μm及180μm以下的作物。展开更多
文摘为提高自然环境下生姜叶片病虫害的识别精确率,提出一种基于改进YOLOv5s的生姜叶片病虫害识别模型。建立了田间不同自然环境条件下的生姜叶片病虫害数据集,为保证模型在田间移动设备上流畅运行,实现网络模型的轻量化,在YOLOv5s中引入GhostNet网络中的Ghost模块和Ghost BottleNeck结构。同时,为避免生姜叶片病虫害图像小目标特征丢失的情况,增强图像特征提取,加入CA注意力机制模块,提升生姜叶片病虫害的识别准确率和定位精确度。改进后的模型参数量、计算量和权重文件大小分别为YOLOv5s模型的52.0%、50.6%和55.2%,对生姜叶片病虫害识别平均精度均值达到了83.8%。与Faster-RCNN、SSD、YOLOv4、YOLOv5s、Tea-YOLOv5s等算法相比,平均精度均值分别提高37.6、39.1、22.5、1.5、0.7个百分点,将改进后的目标检测模型部署在Jetson Orin NX开发板上,并使用TensorRT、Int8量化和CUDA等方法对检测模型加速,加速后的模型检测速度为74.3帧/s,满足实时检测的要求,测试结果显示,改进后的模型减少了漏检、误检的情况,并且对目标定位更加精准,适用于自然环境下生姜叶片病虫害的精准识别,为后续生姜机械自动化施药作业提供技术理论支持。
文摘小白菜是中国种植面积较广、深受大众喜爱的蔬菜,真实菜地环境中虫害往往出现在叶片的特定区域,且受环境因素如光照和背景干扰较大,影响对其的智能检测。为提高小白菜虫害的检测效率和准确率,该研究提出一种基于YOLOv5s网络框架改进的YOLOPC(YOLO for Pak Choi)小白菜虫害识别模型。首先,引入CBAM(convolutional block attention module)注意力机制,将其放在CBS(卷积层Convolution+归一化层Batch normalization+激活函数层SILU)的输入端构成CBAM-CBS的结构,动态调整特征图中各个通道和空间位置的权重;使用上采样和1×1卷积操作来调整特征图的尺寸和通道数,实现不同层次特征的融合,增强模型的特征表示能力。同时,改进损失函数,使其更适合边界框回归的准确性需求;利用空洞卷积的优势提高网络的感受野范围,使模型能够更好地理解图像的上下文信息。试验结果表明,与改进前的YOLOv5s模型相比,YOLOPC模型对小白菜小菜蛾和潜叶蝇虫害检测的平均精度均值(mean average precision, mAP)达到91.4%,提高了12.9%;每秒传输帧数(Frame Per Second, FPS)为58.82帧/s,增加了11.2帧/s,增加幅度达23.53%;参数量仅为14.4 M,降低了25.78%。与经典的目标检测算法SSD、Faster R-CNN、YOLOv3、YOLOv7和YOLOv8相比,YOLOPC模型的平均精度均值分别高出20.1%、24.6%、14%、13.4%和13.3%,此外,其准确率、召回率、帧速率和参数量均展现出显著优势。该模型可为复杂背景下小白菜虫害的快速准确检测提供技术支持。
文摘无人机补播是草地修复的有效手段之一。针对无人机作业过程中,空斑定位精度不高导致的效率低下、工作量大等问题,该研究提出一种基于无人机图像超分辨率重建和Transformer的退化草地空斑定位方法YOLOFG(YOLO for Gap)。首先基于YOLOv5s网络框架,在模型颈部设计联级特征纹理选择模块,强化模型特征纹理细节聚焦力,解决无人机空斑影像尺度变化大、纹理模糊问题;其次,以ShuffleNetV2构建主干网络,嵌入信息交互Transformer自注意力结构,提取像素间更多差异化特征,以提升模型对空斑边缘像素的精确捕获能力;最后,基于空斑锚框信息建立无人机位姿信息和空间平面的成像模型,实现目标空斑的精准定位。试验结果表明,YOLOFG模型平均精度均值为96.57%,相较于原始YOLOv5s模型提升3.84个百分点;参数量约为6.24 M,比原始模型降低约11.2%。与YOLOv4、YOLOv7、YOLOv8模型相比,检测精度分别提高11.86、9.65、6.82个百分点。空斑定位的平均误差为0.4404 m,满足无人机作业对草地空斑精准定位的需求,可为开展退化草地植被恢复与重建工作提供技术支持。
文摘为了探究电极材料对静电喷嘴雾化效果和荷电性能的影响,确定设计的静电喷嘴的最佳作业参数,并明确静电作用对雾滴沉积效果的影响,以电极材料、电极电压、喷施压力和喷孔直径为喷施变量,针对设计的静电喷嘴进行室内雾化和沉积试验。研究结果表明:设计的静电喷嘴最佳电极电压为8 k V,最佳电极材料为紫铜,最佳喷施压力为170 k Pa;相比于非静电喷雾,静电作用开启后,静电喷嘴的有效喷幅增加约50 cm;在3个采样层的雾滴沉积密度依次增加了23、19、10个/cm2;在喷嘴雾化的所有雾滴中,粒径在50~120μm区间的雾滴受静电作用影响最大,静电作用开启后,此区间段内的雾滴沉积数量增加了约2倍,当雾滴粒径大于120μm时,雾滴沉积密度随雾滴粒径的增大呈下降趋势;沉积的雾滴主要是粒径在180μm以下的雾滴,因此适合最佳生物粒径为180μm及180μm以下的作物。