Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July...Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.展开更多
The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated predi...The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated prediction effect of ARIMA model is good by Ljung-Box Q-test and R2, and the model can be used for prediction on future atmosphere pollutant changes.展开更多
In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures...In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures, getting the restructuring matrix. The characteristic block with the best restoration effect was determined by analyzing the pixel difference of the common information of each image at the same position. Then the characteristic blocks and their original blocks were used to build and train neural network. Finally, images were restored by the neural network and the differences between pictures were reduced. Experimental results showed that this method could significantly improve the efficiency and precision of algorithm.展开更多
文摘Based on the analysis of monitoring data on six pollution indexes of SO2, NO2, CO, O3, PM10 and PM2.5 from 53 monitoring points in 7 cities, including Beijing, Tianjin, Shijiazhuang, etc., from April 8 of 2014 to July 23 of 2014, this article adopted Pearson correlation coefficient method to determine the relevance among each pollutant of these cities with the help of SPSS. The results showed that such three leading indexes as SO2, PM10 and PM2.5 had strong correlation in Beijing, Tianjin and main cities of Hebei. Finally, some suggestions and preventive measures for the cooperative governance of air pollution in Beijing-Tianjin-Hebei Region were put forward, hoping this can help them.
基金Supported by Student Research Fund of Agricultural University of Hebei(cxzr2014023)Technology Fund of Agricultural University of Hebei(ZD201406)~~
文摘The research conducted prediction on changes of atmosphere pollution during July 9, 2014-July 22, 2014 with SPSS based on monitored data of O3 in 13 successive weeks from 6 sites in Baoding City and demonstrated prediction effect of ARIMA model is good by Ljung-Box Q-test and R2, and the model can be used for prediction on future atmosphere pollutant changes.
基金Supported by the Youth Fund for Science and Technology Research of Institution of Higher Education in Hebei Province in 2016(QN2016243)~~
文摘In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures, getting the restructuring matrix. The characteristic block with the best restoration effect was determined by analyzing the pixel difference of the common information of each image at the same position. Then the characteristic blocks and their original blocks were used to build and train neural network. Finally, images were restored by the neural network and the differences between pictures were reduced. Experimental results showed that this method could significantly improve the efficiency and precision of algorithm.