[Objective] The aim was to better research the function and action mode of High Mobility Group B (HMGB) proteins in higher plants. [Method] At2G33450,At5G23405 and At5G23420 genes of HMGB protein family in Arabidops...[Objective] The aim was to better research the function and action mode of High Mobility Group B (HMGB) proteins in higher plants. [Method] At2G33450,At5G23405 and At5G23420 genes of HMGB protein family in Arabidopsis thaliana were cloned by the use of RT-PCR method,and the expression of these three proteins in E.coli and Arabidopsis thaliana were detected by using SDS-PAGE,Northern blot and subcellular localization methods. [Result] The results showed that the molecular weights of the three proteins were 17.5,17.0 and 27.0 kD respectively,and the expression levels of the proteins in Arabidopsis thaliana were At5G23420At5G23405At2G33450. In addition,all the three proteins were located in nucleus. [Conclusion] The study will provide a basis for the further research on the biological function of HMGB proteins in higher plants.展开更多
为了解高迁移率族蛋白B族(high mobility group protein B,HMGB)基因调控植物响应低温、高盐和干旱等外源胁迫的表达调控方式,本文克隆了拟南芥AtHMGB前5个家族成员的启动子区域(PAtHMGB1,PAtHMGB2,PAtHMGB3,PAtHMGB4和PAtHMGB5).运用...为了解高迁移率族蛋白B族(high mobility group protein B,HMGB)基因调控植物响应低温、高盐和干旱等外源胁迫的表达调控方式,本文克隆了拟南芥AtHMGB前5个家族成员的启动子区域(PAtHMGB1,PAtHMGB2,PAtHMGB3,PAtHMGB4和PAtHMGB5).运用基因重组技术将其分别替换表达载体上35S启动子区域获得重组表达载体,利用农杆菌介导法侵染烟草获得稳定表达的转基因烟草.运用实时定量PCR检测上述5种启动子的转基因烟草,观察在外源胁迫(低温、高盐和干旱)处理前后gusA基因的表达差异,同时检测转基因烟草种子在不同外源胁迫条件下的萌发状况.检测结果证实,在低温胁迫下,PAtHMGB2,PAtHMGB3和PAtHMGB4正调控gusA基因的表达,而在干旱或盐胁迫下,gusA基因的表达被PAtHMGB2和PAtHMGB3负调控.种子萌发结果表明,在干旱胁迫下,PAtHMGB2调控下的转基因烟草比野生型烟草萌发及生长迟缓;在低温胁迫下,PAtHMGB2调控的转基因烟草长势明显强于野生型.本研究克隆了拟南芥AtHMGB家族前5个成员启动子,分析其生物学功能发现,PAtHMGB2在响应低温和干旱胁迫方面效果尤为显著.展开更多
[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector ...[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector pPIC9K containing AOXl promoter and the sequences of secreting α-signal peptides. Recombinant plasmid was linearized by Sal l and transformed into P. pastoris GSl15 competent cells by electroporation. Positive integrated clones were screened out, and the At2G34450 protein was expressed under the induction of methanol. [Result] The At2G34450 protein was expressed in yeast medium through methanol induction. SDS-PAGE results showed that recombination product was At2G34450 protein. [Conclusion] At2G34450 protein was successfully expressed in the P. pastoris system for the first time, which paves a direct path to further research on the functions of HMGB family members.展开更多
[Objective]To better understand the functions of High Mobility Group B (HMGB) proteins in the transcriptional regulation of plant stress responses.[Method]We cloned the At2G33450 gene encoding At2G34450 protein in A...[Objective]To better understand the functions of High Mobility Group B (HMGB) proteins in the transcriptional regulation of plant stress responses.[Method]We cloned the At2G33450 gene encoding At2G34450 protein in Arabidopsis thaliana.Binary vectors carrying the above gene were transformed into Arabidopsis to detect the influences of environmental stimuli to transgenic Arabidopsis.[Result] Under salt or drought stress the transgenic Arabidopsis plants over-expressed At2G33450 displayed retarded germination and subsequent growth compared with wild-type plants.[Conclusion]Our results provide a novel basis for understanding the biological functions of HMGB protein family members that differently affect germination and seedling growth of Arabidopsis plants under various stress conditions.展开更多
文摘[Objective] The aim was to better research the function and action mode of High Mobility Group B (HMGB) proteins in higher plants. [Method] At2G33450,At5G23405 and At5G23420 genes of HMGB protein family in Arabidopsis thaliana were cloned by the use of RT-PCR method,and the expression of these three proteins in E.coli and Arabidopsis thaliana were detected by using SDS-PAGE,Northern blot and subcellular localization methods. [Result] The results showed that the molecular weights of the three proteins were 17.5,17.0 and 27.0 kD respectively,and the expression levels of the proteins in Arabidopsis thaliana were At5G23420At5G23405At2G33450. In addition,all the three proteins were located in nucleus. [Conclusion] The study will provide a basis for the further research on the biological function of HMGB proteins in higher plants.
文摘为了解高迁移率族蛋白B族(high mobility group protein B,HMGB)基因调控植物响应低温、高盐和干旱等外源胁迫的表达调控方式,本文克隆了拟南芥AtHMGB前5个家族成员的启动子区域(PAtHMGB1,PAtHMGB2,PAtHMGB3,PAtHMGB4和PAtHMGB5).运用基因重组技术将其分别替换表达载体上35S启动子区域获得重组表达载体,利用农杆菌介导法侵染烟草获得稳定表达的转基因烟草.运用实时定量PCR检测上述5种启动子的转基因烟草,观察在外源胁迫(低温、高盐和干旱)处理前后gusA基因的表达差异,同时检测转基因烟草种子在不同外源胁迫条件下的萌发状况.检测结果证实,在低温胁迫下,PAtHMGB2,PAtHMGB3和PAtHMGB4正调控gusA基因的表达,而在干旱或盐胁迫下,gusA基因的表达被PAtHMGB2和PAtHMGB3负调控.种子萌发结果表明,在干旱胁迫下,PAtHMGB2调控下的转基因烟草比野生型烟草萌发及生长迟缓;在低温胁迫下,PAtHMGB2调控的转基因烟草长势明显强于野生型.本研究克隆了拟南芥AtHMGB家族前5个成员启动子,分析其生物学功能发现,PAtHMGB2在响应低温和干旱胁迫方面效果尤为显著.
基金Supported by Scientific Research Start-up Fund for Doctors of Liaocheng University(31805)~~
文摘[Objective] The aim was to study the expression of Arabidopsis gene A/2G34450 in Pichia pastoris and to obtain recombinant Arabidopsis HMGB protein. [Method] The At2G34450 gene was cloned into yeast expression vector pPIC9K containing AOXl promoter and the sequences of secreting α-signal peptides. Recombinant plasmid was linearized by Sal l and transformed into P. pastoris GSl15 competent cells by electroporation. Positive integrated clones were screened out, and the At2G34450 protein was expressed under the induction of methanol. [Result] The At2G34450 protein was expressed in yeast medium through methanol induction. SDS-PAGE results showed that recombination product was At2G34450 protein. [Conclusion] At2G34450 protein was successfully expressed in the P. pastoris system for the first time, which paves a direct path to further research on the functions of HMGB family members.
基金Supported by Doctor Initial Fund of Liaocheng University~~
文摘[Objective]To better understand the functions of High Mobility Group B (HMGB) proteins in the transcriptional regulation of plant stress responses.[Method]We cloned the At2G33450 gene encoding At2G34450 protein in Arabidopsis thaliana.Binary vectors carrying the above gene were transformed into Arabidopsis to detect the influences of environmental stimuli to transgenic Arabidopsis.[Result] Under salt or drought stress the transgenic Arabidopsis plants over-expressed At2G33450 displayed retarded germination and subsequent growth compared with wild-type plants.[Conclusion]Our results provide a novel basis for understanding the biological functions of HMGB protein family members that differently affect germination and seedling growth of Arabidopsis plants under various stress conditions.