The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of form...The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.展开更多
Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distri...Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.展开更多
The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid...The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.展开更多
Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical exa...Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.展开更多
In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect...In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect of α phase content on formation and evolution of ORL, and the stability and diffusion of oxygen in α- and β-Ti were investigated by first principles calculations to reveal the oxygen diffusion rate. TA15 with more α phases has a higher diffusion coefficient of ORL evolution than TC4, resulting in forming thicker ORL on TA15 under the same thermal exposure condition. The first principles calculations indicate that octahedral interstice of α-Ti is the most stable site for oxygen atom. The nearest neighbor diffusion between octahedral interstices along the [0001] direction in α-Ti presenting the lowest activation energy is the most favorable oxygen diffusion mechanism in α- and β-Ti.展开更多
The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties ...The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties including cohesive energy and formation enthalpy indicate V atom would preferentially substitute on 6h sites of Fe atoms in the lattice of TiFe_2 to form the intermetallic Ti_4Fe_7(V).The calculated results of polycrystalline elastic parameters confirm that the plasticity of TiFe_2 would be improved with the addition of V.By discussing the percentage of elastic anisotropy,anisotropy in linear bulk modulus and directional dependence of elastic modulus,it is revealed that the anisotropy of TiFe_2 and Ti_4Fe_7(V) is small.Finally,the density of states,charge density distribution and Mulliken population for TiFe_2 and Ti_4Fe_7(V) were calculated,suggesting there is a mixed bonding with metallic,covalent and ionic nature in TiFe_2 and Ti_4Fe_7(V) compounds.These results also clarify that the reason for the improvement of plasticity with the addition of V in TiFe_2 is the weakened bonding of covalent feature between Ti and V atoms.展开更多
基金Project supported by the National Key Laboratory Opening Funding of Advanced Composites in Special Environments in Harbin Institute of Technology,China
文摘The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.
文摘Nanoindentation and high resolution electron backscatter diffraction(EBSD) were combined to examine the elastic modulus and hardness of α and β phases,anisotropy in residual elastic stress strain fields and distributions of geometrically necessary dislocation(GND) density around the indentations within TA15 titanium alloy.The nano-indention tests were conducted on α and β phases,respectively.The residual stress strain fields surrounding the indentation were calculated through crosscorrelation method from recorded patterns.The GND density distribution around the indentation was calculated based on the strain gradient theories to reveal the micro-mechanism of plastic deformation.The results indicate that the elastic modulus and hardness for α p hase are 129.05 GPas and 6.44 GPa,while for β phase,their values are 109.80 GPa and 4.29 GPa,respectively.The residual Mises stress distribution around the indentation is relatively heterogeneous and significantly influenced by neighboring soft β phase.The region with low residual stress around the indentation is accompanied with markedly high a type and prismatic-GND density.
文摘The workpieces of A357 alloy were routinely heat treated to the T6 state in order to gain an adequate mechanical property.The mechanical properties of these workpieces depend mainly on solid-solution temperature,solid-solution time,artificial aging temperature and artificial aging time.An artificial neural network(ANN) model with a back-propagation(BP) algorithm was used to predict mechanical properties of A357 alloy,and the effects of heat treatment processes on mechanical behavior of this alloy were studied.The results show that this BP model is able to predict the mechanical properties with a high accuracy.This model was used to reflect the influence of heat treatments on the mechanical properties of A357 alloy.Isograms of ultimate tensile strength and elongation were drawn in the same picture,which are very helpful to understand the relationship among aging parameters,ultimate tensile strength and elongation.
文摘Based on the computational fluid dynamics (CFD) method, a quenching tank with two agitator systems and two flow-equilibrating devices was selected to simulate flow distribution using Fluent software. A numerical example was used to testify the validity of the quenching tank model. In order to take tank parameters (agitation speed, position of directional flow baffle and coordinate position in quench zone) into account, an approach that combines the artificial neural network (ANN) with CFD method was developed to study the flow distribution in the quenching tank. The flow rate of the quenching medium shows a very good agreement between the ANN predicted results and the Fluent simulated data. Methods for the optimal design of the quenching tank can be used as technical support for industrial production.
基金Project(51701128) supported by the National Natural Science Foundation of China
文摘In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect of α phase content on formation and evolution of ORL, and the stability and diffusion of oxygen in α- and β-Ti were investigated by first principles calculations to reveal the oxygen diffusion rate. TA15 with more α phases has a higher diffusion coefficient of ORL evolution than TC4, resulting in forming thicker ORL on TA15 under the same thermal exposure condition. The first principles calculations indicate that octahedral interstice of α-Ti is the most stable site for oxygen atom. The nearest neighbor diffusion between octahedral interstices along the [0001] direction in α-Ti presenting the lowest activation energy is the most favorable oxygen diffusion mechanism in α- and β-Ti.
基金Project(51401099)supported by the National Natural Science Foundation of ChinaProject(201501079)supported by the Doctor Startup Foundation of Liaoning Province,China
文摘The alloying effects of V on structural,elastic and electronic properties of TiFe_2 phase were investigated by the first-principles calculations based on the density functional theory.The calculated energy properties including cohesive energy and formation enthalpy indicate V atom would preferentially substitute on 6h sites of Fe atoms in the lattice of TiFe_2 to form the intermetallic Ti_4Fe_7(V).The calculated results of polycrystalline elastic parameters confirm that the plasticity of TiFe_2 would be improved with the addition of V.By discussing the percentage of elastic anisotropy,anisotropy in linear bulk modulus and directional dependence of elastic modulus,it is revealed that the anisotropy of TiFe_2 and Ti_4Fe_7(V) is small.Finally,the density of states,charge density distribution and Mulliken population for TiFe_2 and Ti_4Fe_7(V) were calculated,suggesting there is a mixed bonding with metallic,covalent and ionic nature in TiFe_2 and Ti_4Fe_7(V) compounds.These results also clarify that the reason for the improvement of plasticity with the addition of V in TiFe_2 is the weakened bonding of covalent feature between Ti and V atoms.