非侵入式负荷监测(non-intrusive load monitoring,NILM)是研究居民用户负荷信息的常用方法,但存在分解准确度低、算法泛化性能低等系列问题。为此,该文应用图信号处理(graph signal processing,GSP)理论,提出一种基于图信号交替优化的...非侵入式负荷监测(non-intrusive load monitoring,NILM)是研究居民用户负荷信息的常用方法,但存在分解准确度低、算法泛化性能低等系列问题。为此,该文应用图信号处理(graph signal processing,GSP)理论,提出一种基于图信号交替优化的居民用户NILM方法。该方法根据总负荷数据构建图信号模型,并基于图信号模型得到关于功率损耗的约束条件,较好地解决了传统方法缺乏负荷数据相关性研究的问题。相比于传统方法需要对模型参数多次调整,交替优化法可以自动调整参数,提高了实时监测能力,降低了电网运营成本。仿真结果表明,在1min采样率下,基于图信号交替优化法的总负荷分解准确度比NILM-GSP提高了15%,计算时间降低了10%,充分体现了该文算法性能的优越性。展开更多
文摘非侵入式负荷监测(non-intrusive load monitoring,NILM)是研究居民用户负荷信息的常用方法,但存在分解准确度低、算法泛化性能低等系列问题。为此,该文应用图信号处理(graph signal processing,GSP)理论,提出一种基于图信号交替优化的居民用户NILM方法。该方法根据总负荷数据构建图信号模型,并基于图信号模型得到关于功率损耗的约束条件,较好地解决了传统方法缺乏负荷数据相关性研究的问题。相比于传统方法需要对模型参数多次调整,交替优化法可以自动调整参数,提高了实时监测能力,降低了电网运营成本。仿真结果表明,在1min采样率下,基于图信号交替优化法的总负荷分解准确度比NILM-GSP提高了15%,计算时间降低了10%,充分体现了该文算法性能的优越性。