该文研究了电网换相换流器高压直流输电(line commutated converter high voltage direct current,LCC-HVDC)系统逆变侧采用不同锁相环时,锁相环控制回路比例–积分(proportional integral,PI)参数变化对直流控制回路稳定性的影响。首先...该文研究了电网换相换流器高压直流输电(line commutated converter high voltage direct current,LCC-HVDC)系统逆变侧采用不同锁相环时,锁相环控制回路比例–积分(proportional integral,PI)参数变化对直流控制回路稳定性的影响。首先,分别建立了逆变侧锁相环采用滑动平均滤波(mo ving average filter,MAF)和级联延时消去滤波(cascaded delayed signal cancellation,CDSC)的LCC-HVDC小干扰动态模型,并通过电磁暂态仿真验证了该模型的正确性。其次,基于拉普拉斯变换获得系统定电压控制回路的传递函数,利用奈奎斯特稳定判据以及稳定裕度指标分析不同锁相环对定电压控制回路稳定性的影响,并进行了机理分析,同时在PSCAD/EMTDC的电磁暂态模型上进行了验证。最后,进一步在LCC-HVDC工程模型上对该文所得结论的普适性进行了仿真验证。展开更多
随着城市化的不断发展,城市轨道交通已经成为市民的外出首选。为满足轨道交通行业移动通信的需求,无线局域网(Wireless Local Area Network,WLAN)网络已经优先应用于城市轨道交通行业。随着通信技术的不断发展,抗干扰能力更强的长期演进...随着城市化的不断发展,城市轨道交通已经成为市民的外出首选。为满足轨道交通行业移动通信的需求,无线局域网(Wireless Local Area Network,WLAN)网络已经优先应用于城市轨道交通行业。随着通信技术的不断发展,抗干扰能力更强的长期演进(Long Term Evolution,LTE)网络在城市轨道交通上得到了更多的应用。因此,在一些原有WLAN网络覆盖的轨道上,其延长线会采用LTE网络进行覆盖,会出现LTE和WLAN网络存在重叠覆盖路段的情况,列车在行驶时需要在不同的网络制式下进行切换。针对当前城市轨道交通WLAN-LTE融合的背景,基于列车接入单元(Train Access Unit,TAU)提出了一种列车在不同网络间的切换接入方案,成功实现了WLAN和LTE之间的网络切换,可以满足城市轨道交通实际应用场景的需求。展开更多
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
文摘该文研究了电网换相换流器高压直流输电(line commutated converter high voltage direct current,LCC-HVDC)系统逆变侧采用不同锁相环时,锁相环控制回路比例–积分(proportional integral,PI)参数变化对直流控制回路稳定性的影响。首先,分别建立了逆变侧锁相环采用滑动平均滤波(mo ving average filter,MAF)和级联延时消去滤波(cascaded delayed signal cancellation,CDSC)的LCC-HVDC小干扰动态模型,并通过电磁暂态仿真验证了该模型的正确性。其次,基于拉普拉斯变换获得系统定电压控制回路的传递函数,利用奈奎斯特稳定判据以及稳定裕度指标分析不同锁相环对定电压控制回路稳定性的影响,并进行了机理分析,同时在PSCAD/EMTDC的电磁暂态模型上进行了验证。最后,进一步在LCC-HVDC工程模型上对该文所得结论的普适性进行了仿真验证。
文摘随着城市化的不断发展,城市轨道交通已经成为市民的外出首选。为满足轨道交通行业移动通信的需求,无线局域网(Wireless Local Area Network,WLAN)网络已经优先应用于城市轨道交通行业。随着通信技术的不断发展,抗干扰能力更强的长期演进(Long Term Evolution,LTE)网络在城市轨道交通上得到了更多的应用。因此,在一些原有WLAN网络覆盖的轨道上,其延长线会采用LTE网络进行覆盖,会出现LTE和WLAN网络存在重叠覆盖路段的情况,列车在行驶时需要在不同的网络制式下进行切换。针对当前城市轨道交通WLAN-LTE融合的背景,基于列车接入单元(Train Access Unit,TAU)提出了一种列车在不同网络间的切换接入方案,成功实现了WLAN和LTE之间的网络切换,可以满足城市轨道交通实际应用场景的需求。
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.