Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,...Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films.展开更多
基金Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Tech-nology,China(Grant No.2020B1212030010)Project of Faculty of Agricultural Equipment of Jiangsu University (Grant No. NZXB20210202) are acknowledged。
文摘Ferroelectric HfO_(2)has attracted much attention owing to its superior ferroelectricity at an ultra-thin thickness and good compatibility with Si-based complementary metal-oxide-semiconductor(CMOS)technology.However,the crystallization of polar orthorhombic phase(o-phase)HfO_(2)is less competitive,which greatly limits the ferroelectricity of the as-obtained ferroelectric HfO_(2)thin films.Fortunately,the crystallization of o-phase HfO_(2)can be thermodynamically modulated via interfacial stress engineering.In this paper,the growth of improved ferroelectric Al doped HfO_(2)(HfO_(2):Al)thin films on(111)-oriented Si substrate has been reported.Structural analysis has suggested that nonpolar monoclinic HfO_(2):Al grown on(111)-oriented Si substrate suffered from a strong compressive strain,which promoted the crystallization of(111)-oriented o-phase HfO_(2)in the as-grown HfO_(2):Al thin films.In addition,the in-plane lattice of(111)-oriented Si substrate matches well with that of(111)-oriented o-phase HfO_(2),which further thermally stabilizes the o-phase HfO_(2).Accordingly,an improved ferroelectricity with a remnant polarization(2P_(r))of 26.7C/cm^(2) has been obtained.The results shown in this work provide a simple way toward the preparation of improved ferroelectric HfO_(2)thin films.