近年来,随着物联网(Internet of things,IoT)设备的大规模部署,针对物联网设备的恶意代码也不断出现,物联网安全面临来自恶意代码的巨大威胁,亟需对物联网恶意代码检测技术进行综合研究.随着人工智能(artificial intelligence,AI)在计...近年来,随着物联网(Internet of things,IoT)设备的大规模部署,针对物联网设备的恶意代码也不断出现,物联网安全面临来自恶意代码的巨大威胁,亟需对物联网恶意代码检测技术进行综合研究.随着人工智能(artificial intelligence,AI)在计算机视觉和自然语言处理等领域取得了举世瞩目的成就,物联网安全领域也出现了许多基于人工智能的恶意代码检测工作.通过跟进相关研究成果,从物联网环境和设备的特性出发,提出了基于该领域研究主要动机的分类方法,从面向物联网设备限制缓解的恶意代码检测和面向性能提升的物联网恶意代码检测2方面分析该领域的研究发展现状.该分类方法涵盖了物联网恶意代码检测的相关研究,充分体现了物联网设备独有的特性以及当前该领域研究存在的不足.最后通过总结现有研究,深入讨论了目前基于人工智能的恶意代码检测研究中存在的问题,为该领域未来的研究提出了结合大模型实现物联网恶意代码检测,提高检测模型安全性以及结合零信任架构3个可能的发展方向.展开更多
文摘近年来,随着物联网(Internet of things,IoT)设备的大规模部署,针对物联网设备的恶意代码也不断出现,物联网安全面临来自恶意代码的巨大威胁,亟需对物联网恶意代码检测技术进行综合研究.随着人工智能(artificial intelligence,AI)在计算机视觉和自然语言处理等领域取得了举世瞩目的成就,物联网安全领域也出现了许多基于人工智能的恶意代码检测工作.通过跟进相关研究成果,从物联网环境和设备的特性出发,提出了基于该领域研究主要动机的分类方法,从面向物联网设备限制缓解的恶意代码检测和面向性能提升的物联网恶意代码检测2方面分析该领域的研究发展现状.该分类方法涵盖了物联网恶意代码检测的相关研究,充分体现了物联网设备独有的特性以及当前该领域研究存在的不足.最后通过总结现有研究,深入讨论了目前基于人工智能的恶意代码检测研究中存在的问题,为该领域未来的研究提出了结合大模型实现物联网恶意代码检测,提高检测模型安全性以及结合零信任架构3个可能的发展方向.