农作物物候信息对农作物长势监测和估产具有重要意义。该文以河北省中南部冬小麦为研究对象,以叶面积指数(LAI,leaf area index)为同化量,采用重采样粒子滤波算法同化WOFOST(world food studies)作物生长模型和遥感观测LAI,重构LAI时间...农作物物候信息对农作物长势监测和估产具有重要意义。该文以河北省中南部冬小麦为研究对象,以叶面积指数(LAI,leaf area index)为同化量,采用重采样粒子滤波算法同化WOFOST(world food studies)作物生长模型和遥感观测LAI,重构LAI时间序列数据,基于重构数据提取冬小麦返青期、抽穗期和成熟期等关键物候期。重构结果表明,重构的LAI具有良好的时间连续性和空间连续性,可减缓WOFOST作物模型LAI变化剧烈程度,峰值出现时间与遥感LAI曲线基本同步,且可一定程度上解决遥感观测LAI数值整体偏低和数据缺失的问题。物候期监测结果表明,在空间分布上与冬小麦实际生长状况基本相符,时间上也较为合理,但因在返青期存在LAI高初始值、成熟期存在LAI下限不确定性等问题致使在具体日期存在偏差。展开更多
以河南省商丘市为研究区,首先采用OAT(One-at-a-time)方法对WheatGrow模型的输入品种参数进行敏感性分析,在此基础上以抽穗期的开始日期作为约束条件构建代价函数,引入SCE-UA(Shuffled complex evolution method developed at the Unive...以河南省商丘市为研究区,首先采用OAT(One-at-a-time)方法对WheatGrow模型的输入品种参数进行敏感性分析,在此基础上以抽穗期的开始日期作为约束条件构建代价函数,引入SCE-UA(Shuffled complex evolution method developed at the University of Arizona)算法求解得到最优作物品种参数组合,并利用2015—2016年度和2016—2017年度田间实验资料对SCE-UA算法的有效性进行验证。结果表明,基本早熟性参数对穗分化期的模拟结果影响最显著,温度敏感性参数比光周期敏感性参数和生理春化时间参数具有更高的敏感度,生理春化时间的敏感度最低。基于优化后的参数得到的穗分化期模拟值与观测值之间的平均绝对误差(Mean absolute error,MAE)和均方根误差(Root mean square error,RMSE)均小于3 d,表明SCE-UA算法可以有效地获取WheatGrow模型最优品种参数组合。本研究可为WheatGrow模型品种参数的调整优化和模型的推广应用提供依据。展开更多
准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)...准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)影像为数据源,选择归一化植被指数(normalized difference vegetation index,NDVI)、增强植被指数(enhanced vegetation index,EVI)、宽动态植被指数(wide dynamic range vegetation index,WDRVI)、归一化水指数(normalized difference water index,NDWI)4个特征,结合实地调查样本点,采用随机森林分类算法,提取黑龙江省黑河市嫩江县玉米与大豆种植面积。研究表明,区分玉米与大豆的最佳时段为9月下旬至10月上旬,即大豆已收获而玉米未收获的时段,在4个待选特征中,NDVI、NDWI与WDRVI指数组合表现最佳;随机森林算法与最大似然算法、支持向量机算法相比,分类精度更高,其总体分类精度为84.82%,Kappa系数为77.42%。玉米制图精度为91.49%,用户精度为93.48%;大豆制图精度为91.14%,用户精度为82.76%。该方法为大区域农作物的分类提供重要参考和借鉴价值。展开更多
为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和S...为了评估同化时间序列叶面积指数(leaf area index,LAI)和蒸散发(evapotranspiration,ET)产品对冬小麦产量估测的有效性和适用性,该文选择陕西省关中平原冬小麦为研究对象,以SWAP为作物生长动态模型,利用冬小麦关键生育期的遥感观测和SWAP模拟LAI、ET趋势变化信息构建代价函数,以SCE-UA作为优化算法最小化代价函数,重新初始化SWAP模型中的出苗日期和灌溉量2个参数。重点比较了基于向量夹角和一阶差分2种代价函数的冬小麦单产估测精度。结果表明,同化MODIS LAI和ET后,冬小麦产量的估测精度比未同化精度(r=0.57,RMSE=1 192 kg/hm2)有显著提高,并且基于向量夹角代价函数法同化策略的单产估测精度(r=0.75,RMSE=494 kg/hm2)高于一阶差分代价函数法(r=0.73,RMSE=667 kg/hm2)的估测精度。该方法为其他区域的水分胁迫模式下遥感与作物模型双变量数据同化提供了参考。展开更多
文摘农作物物候信息对农作物长势监测和估产具有重要意义。该文以河北省中南部冬小麦为研究对象,以叶面积指数(LAI,leaf area index)为同化量,采用重采样粒子滤波算法同化WOFOST(world food studies)作物生长模型和遥感观测LAI,重构LAI时间序列数据,基于重构数据提取冬小麦返青期、抽穗期和成熟期等关键物候期。重构结果表明,重构的LAI具有良好的时间连续性和空间连续性,可减缓WOFOST作物模型LAI变化剧烈程度,峰值出现时间与遥感LAI曲线基本同步,且可一定程度上解决遥感观测LAI数值整体偏低和数据缺失的问题。物候期监测结果表明,在空间分布上与冬小麦实际生长状况基本相符,时间上也较为合理,但因在返青期存在LAI高初始值、成熟期存在LAI下限不确定性等问题致使在具体日期存在偏差。
文摘以河南省商丘市为研究区,首先采用OAT(One-at-a-time)方法对WheatGrow模型的输入品种参数进行敏感性分析,在此基础上以抽穗期的开始日期作为约束条件构建代价函数,引入SCE-UA(Shuffled complex evolution method developed at the University of Arizona)算法求解得到最优作物品种参数组合,并利用2015—2016年度和2016—2017年度田间实验资料对SCE-UA算法的有效性进行验证。结果表明,基本早熟性参数对穗分化期的模拟结果影响最显著,温度敏感性参数比光周期敏感性参数和生理春化时间参数具有更高的敏感度,生理春化时间的敏感度最低。基于优化后的参数得到的穗分化期模拟值与观测值之间的平均绝对误差(Mean absolute error,MAE)和均方根误差(Root mean square error,RMSE)均小于3 d,表明SCE-UA算法可以有效地获取WheatGrow模型最优品种参数组合。本研究可为WheatGrow模型品种参数的调整优化和模型的推广应用提供依据。
文摘准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)影像为数据源,选择归一化植被指数(normalized difference vegetation index,NDVI)、增强植被指数(enhanced vegetation index,EVI)、宽动态植被指数(wide dynamic range vegetation index,WDRVI)、归一化水指数(normalized difference water index,NDWI)4个特征,结合实地调查样本点,采用随机森林分类算法,提取黑龙江省黑河市嫩江县玉米与大豆种植面积。研究表明,区分玉米与大豆的最佳时段为9月下旬至10月上旬,即大豆已收获而玉米未收获的时段,在4个待选特征中,NDVI、NDWI与WDRVI指数组合表现最佳;随机森林算法与最大似然算法、支持向量机算法相比,分类精度更高,其总体分类精度为84.82%,Kappa系数为77.42%。玉米制图精度为91.49%,用户精度为93.48%;大豆制图精度为91.14%,用户精度为82.76%。该方法为大区域农作物的分类提供重要参考和借鉴价值。