This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7...This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5 GPa for bcc Fe, and 48.1, 34.6, 51.2 GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point 'bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.展开更多
We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (...We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The firstprinciples computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.展开更多
The diffusion behaviours of hydrogen (H), deuterium (D), and tritium (T) from W(110) surface into bulk and in bulk W are investigated using first-principles calculations combined with simplified models. The di...The diffusion behaviours of hydrogen (H), deuterium (D), and tritium (T) from W(110) surface into bulk and in bulk W are investigated using first-principles calculations combined with simplified models. The diffusion energy barrier is shown to be 1.87 eV from W(110) surface to the subsurface, along with a much reduced barrier of 0.06 eV for the reverse diffusion process. After H enters into the bulk, its diffusion energy barrier with quantum correction is 0.19 eV. In terms of the diffusion theory presented by Wert and Zener, the diffusion pre-exponential factor of H is calculated to be 1.57×10-7 m2.s-1, and it is quantitatively in agreement with the experimental value of 4.1×10-7 m2.s-1. Subsequently, according to mass dependence (√1/m) of H isotope effect, the diffusion pre-exponential factors of D and T are estimated to be 1.11×10-7 m2.s-1 and 0.91×10-7 m2.s-1, respectively.展开更多
Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation, we have systematically investigated the theoretical mechanical properties of copper (Cu...Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation, we have systematically investigated the theoretical mechanical properties of copper (Cu). The theoretical tensile strengths are calculated to be 25.3 GPa, 5.9 GPa, and 37.6 GPa for the fcc Cu single crystal in the [001], [110], and [111] directions, respectively. Among the three directions, the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes, while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes. In terms of the elastic constants of Cu single crystal, we also estimate some mechanical quantities of polycrystalline Cu, including bulk modulus B, shear modulus G, Young's modulus Ep, and Poisson's ratio ~.展开更多
We investigate the stability, diffusion, and impurity concentration of nitrogen in intrinsic tungsten single crystal employing a first-principles method, and find that a single nitrogen atom is energetically favourabl...We investigate the stability, diffusion, and impurity concentration of nitrogen in intrinsic tungsten single crystal employing a first-principles method, and find that a single nitrogen atom is energetically favourable for sitting at the octahedral interstitial site. A nitrogen atom prefers to diffuse between the two nearest neighboring octahedral interstitial sites with a diffusion barrier of 0.72 eV. The diffusion coefficient is determined as a function of temperature and expressed a.s D(N) = 1.66 ~ 10-7 exp(-O.72/kT). The solubility of nitrogen is estimated in intrinsic tungsten in terms of Sieverts' law. The concentration of the nitrogen impurity is found to be 4.82 ~ 10-16 /~ 3 at a temperature of 600 K and a pressure of 1 Pa. A single nitrogen atom can easily sit in an off-vacancy-centre position close to the octahedral interstitial site. There exists a strong attraction between nitrogen and a vacancy with a large binding energy of 1.40 eV. We believe that these results can provide a good reference for the understanding of the behaviour of nitrogen in intrinsic tungsten.展开更多
In terms of first-principles investigation of H-tungsten (W) interaction,we reveal a generic optimal electron density mechanism for H on W(110) surface and at a vacancy in W.Both the surface and vacancy internal surfa...In terms of first-principles investigation of H-tungsten (W) interaction,we reveal a generic optimal electron density mechanism for H on W(110) surface and at a vacancy in W.Both the surface and vacancy internal surface can provide a quantitative optimal electron density of~0.10electron/(A)3 for H binding to make H stability.We believe that such a mechanism is also applicable to other surfaces such as W( 100) surface because of the (100) surface also providing an optimal electron density for H binding,and further likely actions on other metals.展开更多
Stability and diffusion of chromium (Cr) in vanadium (V), the interaction of Cr with vacancies, and the ideal me- chanical properties of V are investigated by first-principles calculations. A single Cr atom is ene...Stability and diffusion of chromium (Cr) in vanadium (V), the interaction of Cr with vacancies, and the ideal me- chanical properties of V are investigated by first-principles calculations. A single Cr atom is energetically favored in the substitution site. Vacancy plays a key role in the trapping of Cr in V. A very strong binding exists between a single Cr atom and the vacancy with a binding energy of 5.03 eV. The first-principles computational tensile test (FPCTT) shows that the ideal tensile strength is 19.1 GPa at the strain of 18% along the [100] direction for the ideal V single crystal, while it decreases to 16.4 GPa at a strain of 12% when one impurity Cr atom is introduced in a 128-atom V supercell. For shear deformation along the most preferable { 110} (111) slip system in V, we found that one substitutional Cr atom can decrease the cleavage energy (7cl) and simultaneously increase the unstable stacking fault energy (]'us) in comparison with the ideal V case. The reduced ratio of ]'cl/]'us in comparison with pure V suggests that the presence of Cr can decrease the ductility of V.展开更多
We studied the energetic behaviors of interstitial and substitution carbon (C)/nitrogen (N) impurities as well as their interactions with the vacancy in vanadium by first-principles simulations. Both C and N impur...We studied the energetic behaviors of interstitial and substitution carbon (C)/nitrogen (N) impurities as well as their interactions with the vacancy in vanadium by first-principles simulations. Both C and N impurities prefer the octahedral site (O-site). N exhibits a lower formation energy than C. Due to the hybridization between vanadium-d and N/C-p, the N-p states are located at the energy from -6.00 eV to -5.00 eV, which is much deeper than that from -5.00 eV to -3.00 eV for the C-p states. Two impurities in bulk vanadium, C-C, C-N, and N-N can be paired up at the two neighboring O- sites along the (111) direction and the binding energies of the pairs are 0.227 eV, 0.162 eV, and 0.201 eV, respectively. Further, we find that both C and N do not prefer to stay at the vacancy center and its vicinity, but occupy the O-site off the vacancy in the interstitial lattice in vanadium. The possible physical mechanism is that C/N in the O-site tends to form a carbide/nitride-like structure with its neighboring vanadium atoms, leading to the formation of the strong C/N-vanadium bonding containing a covalent component.展开更多
应用第一原理结合统计模型的方法,研究了钼中杂质氮与空位的相互作用。单个氮原子易于占据八面体间隙位。杂质氮很容易为空位所捕获,其捕获能为2.71 e V,与实验值一致。计算了与氮有关的点缺陷浓度,结果表明以N_1V复合物形式存在的空位...应用第一原理结合统计模型的方法,研究了钼中杂质氮与空位的相互作用。单个氮原子易于占据八面体间隙位。杂质氮很容易为空位所捕获,其捕获能为2.71 e V,与实验值一致。计算了与氮有关的点缺陷浓度,结果表明以N_1V复合物形式存在的空位浓度明显增加,钼中空位在杂质氮的捕获中起到了关键的作用。展开更多
基金supported by the National Natural Science Foundation of China(Grant No 50771008)New Century Excellent Talents in University of China
文摘This paper employs a first-principles total-energy method to investigate the theoretical tensile strengths of bcc and fcc Fe systemically. It indicates that the theoretical tensile strengths are shown to be 12.4, 32.7, 27.5 GPa for bcc Fe, and 48.1, 34.6, 51.2 GPa for fcc Fe in the [001], [110] and [111] directions, respectively. For bcc Fe, the [001] direction is shown to be the weakest direction due to the occurrence of a phase transition from ferromagnetic bcc Fe to high spin ferromagnetic fcc Fe. For fcc Fe, the [110] direction is the weakest direction due to the formation of an instable saddle-point 'bct structure' in the tensile process. Furthermore, it demonstrates that a magnetic instability will occur under a tensile strain of 14%, characterized by the transition of ferromagnetic bcc Fe to paramagnetic fcc Fe. The results provide a good reference to understand the intrinsic mechanical properties of Fe as a potential structural material in the nuclear fusion Tokamak.
基金Supported by the National Natural Science Foundation of China under Grant No 50871009, the National Magnetic Confinement Fusion Program under Grant No 2009GB106003, and the Fundamental Research Funds for the Central Universities under Grant No YWF-10-01-B20.
文摘We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The firstprinciples computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.
基金Project supported by the National Natural Science Foundation of China(Grant No.51101135)
文摘The diffusion behaviours of hydrogen (H), deuterium (D), and tritium (T) from W(110) surface into bulk and in bulk W are investigated using first-principles calculations combined with simplified models. The diffusion energy barrier is shown to be 1.87 eV from W(110) surface to the subsurface, along with a much reduced barrier of 0.06 eV for the reverse diffusion process. After H enters into the bulk, its diffusion energy barrier with quantum correction is 0.19 eV. In terms of the diffusion theory presented by Wert and Zener, the diffusion pre-exponential factor of H is calculated to be 1.57×10-7 m2.s-1, and it is quantitatively in agreement with the experimental value of 4.1×10-7 m2.s-1. Subsequently, according to mass dependence (√1/m) of H isotope effect, the diffusion pre-exponential factors of D and T are estimated to be 1.11×10-7 m2.s-1 and 0.91×10-7 m2.s-1, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51101135)
文摘Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation, we have systematically investigated the theoretical mechanical properties of copper (Cu). The theoretical tensile strengths are calculated to be 25.3 GPa, 5.9 GPa, and 37.6 GPa for the fcc Cu single crystal in the [001], [110], and [111] directions, respectively. Among the three directions, the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes, while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes. In terms of the elastic constants of Cu single crystal, we also estimate some mechanical quantities of polycrystalline Cu, including bulk modulus B, shear modulus G, Young's modulus Ep, and Poisson's ratio ~.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50871009 and 51101135)the National Magnetic Confinement Fusion Program,China(Grant No.2009GB106003)
文摘We investigate the stability, diffusion, and impurity concentration of nitrogen in intrinsic tungsten single crystal employing a first-principles method, and find that a single nitrogen atom is energetically favourable for sitting at the octahedral interstitial site. A nitrogen atom prefers to diffuse between the two nearest neighboring octahedral interstitial sites with a diffusion barrier of 0.72 eV. The diffusion coefficient is determined as a function of temperature and expressed a.s D(N) = 1.66 ~ 10-7 exp(-O.72/kT). The solubility of nitrogen is estimated in intrinsic tungsten in terms of Sieverts' law. The concentration of the nitrogen impurity is found to be 4.82 ~ 10-16 /~ 3 at a temperature of 600 K and a pressure of 1 Pa. A single nitrogen atom can easily sit in an off-vacancy-centre position close to the octahedral interstitial site. There exists a strong attraction between nitrogen and a vacancy with a large binding energy of 1.40 eV. We believe that these results can provide a good reference for the understanding of the behaviour of nitrogen in intrinsic tungsten.
基金Supported by the National Natural Science Foundation of China under Grant No 51101135the National Fusion Project of China for ITER under Grant No 2009GB106003.
文摘In terms of first-principles investigation of H-tungsten (W) interaction,we reveal a generic optimal electron density mechanism for H on W(110) surface and at a vacancy in W.Both the surface and vacancy internal surface can provide a quantitative optimal electron density of~0.10electron/(A)3 for H binding to make H stability.We believe that such a mechanism is also applicable to other surfaces such as W( 100) surface because of the (100) surface also providing an optimal electron density for H binding,and further likely actions on other metals.
基金Project supported by the National Natural Science Foundation of China (Grant No.51061130558)the Natural Science Foundation of Shandong Province of China (Grant No.ZR2011AM014)
文摘Stability and diffusion of chromium (Cr) in vanadium (V), the interaction of Cr with vacancies, and the ideal me- chanical properties of V are investigated by first-principles calculations. A single Cr atom is energetically favored in the substitution site. Vacancy plays a key role in the trapping of Cr in V. A very strong binding exists between a single Cr atom and the vacancy with a binding energy of 5.03 eV. The first-principles computational tensile test (FPCTT) shows that the ideal tensile strength is 19.1 GPa at the strain of 18% along the [100] direction for the ideal V single crystal, while it decreases to 16.4 GPa at a strain of 12% when one impurity Cr atom is introduced in a 128-atom V supercell. For shear deformation along the most preferable { 110} (111) slip system in V, we found that one substitutional Cr atom can decrease the cleavage energy (7cl) and simultaneously increase the unstable stacking fault energy (]'us) in comparison with the ideal V case. The reduced ratio of ]'cl/]'us in comparison with pure V suggests that the presence of Cr can decrease the ductility of V.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575153 and 11375108)
文摘We studied the energetic behaviors of interstitial and substitution carbon (C)/nitrogen (N) impurities as well as their interactions with the vacancy in vanadium by first-principles simulations. Both C and N impurities prefer the octahedral site (O-site). N exhibits a lower formation energy than C. Due to the hybridization between vanadium-d and N/C-p, the N-p states are located at the energy from -6.00 eV to -5.00 eV, which is much deeper than that from -5.00 eV to -3.00 eV for the C-p states. Two impurities in bulk vanadium, C-C, C-N, and N-N can be paired up at the two neighboring O- sites along the (111) direction and the binding energies of the pairs are 0.227 eV, 0.162 eV, and 0.201 eV, respectively. Further, we find that both C and N do not prefer to stay at the vacancy center and its vicinity, but occupy the O-site off the vacancy in the interstitial lattice in vanadium. The possible physical mechanism is that C/N in the O-site tends to form a carbide/nitride-like structure with its neighboring vanadium atoms, leading to the formation of the strong C/N-vanadium bonding containing a covalent component.