利用耦合了陆面模式的大气环流模式,结合青藏高原植被退化的范围和程度,通过在模式中修改高原地区(27°—40°N,75°—100°E)的叶面积指数的方法,探讨了植被退化以后对高原及其附近地区上空大气环流的影响。结果表明,...利用耦合了陆面模式的大气环流模式,结合青藏高原植被退化的范围和程度,通过在模式中修改高原地区(27°—40°N,75°—100°E)的叶面积指数的方法,探讨了植被退化以后对高原及其附近地区上空大气环流的影响。结果表明,该模式对高原地表温度场具有很强的模拟能力,并且能够很好地模拟出青藏高原及附近地区夏季位势高度场的平均特征及南亚高压的位置和强度,但南亚高压中心强度偏大且略微西退。在青藏高原植被出现退化以后,高原整体地表土壤温度和地表2 m空气温度升高,感热通量增加、潜热通量减小,进而改变了高原地区的波文比。地表感热增加导致高原及附近地区500 h Pa高度场降低和200 h Pa高度场升高,并在200 h Pa上存在强大的反气旋性环流异常,导致南亚高压增强和北扩东伸。植被退化造成的青藏高原感热增加导致了高原南部上升运动增强和北部上升运动减弱,同时又引起高原以北地区下沉气流的影响范围扩大,而下沉气流的强度减弱,其结果有助于高原以北的干旱范围扩大,而干旱程度却得到缓解。展开更多
文摘利用耦合了陆面模式的大气环流模式,结合青藏高原植被退化的范围和程度,通过在模式中修改高原地区(27°—40°N,75°—100°E)的叶面积指数的方法,探讨了植被退化以后对高原及其附近地区上空大气环流的影响。结果表明,该模式对高原地表温度场具有很强的模拟能力,并且能够很好地模拟出青藏高原及附近地区夏季位势高度场的平均特征及南亚高压的位置和强度,但南亚高压中心强度偏大且略微西退。在青藏高原植被出现退化以后,高原整体地表土壤温度和地表2 m空气温度升高,感热通量增加、潜热通量减小,进而改变了高原地区的波文比。地表感热增加导致高原及附近地区500 h Pa高度场降低和200 h Pa高度场升高,并在200 h Pa上存在强大的反气旋性环流异常,导致南亚高压增强和北扩东伸。植被退化造成的青藏高原感热增加导致了高原南部上升运动增强和北部上升运动减弱,同时又引起高原以北地区下沉气流的影响范围扩大,而下沉气流的强度减弱,其结果有助于高原以北的干旱范围扩大,而干旱程度却得到缓解。