针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提...针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提升空间信息编码能力;改进细化融合特征金字塔网络,构建对称的大尺度深度可分离卷积,提高感受野的范围;通过引入残差分支,以串联的方式融合细化不同尺度的特征信息,提高对小尺度船舶目标的检测能力。基于Seaships数据集的试验结果表明,提出的模型与YOLOv5和YOLOX等相比,具有规模小、实时性好和检测精度高等优势。展开更多
文摘针对船舶目标检测存在的模型参数量多、规模大、实时性差和难以在实际工程中应用等问题,提出面向船舶目标检测的YOLOX轻量化方法。设计CA-Mobile Net V3轻量化主干网络,在Mobile Net V3中融合坐标注意力机制,生成一对方向感知特征图,提升空间信息编码能力;改进细化融合特征金字塔网络,构建对称的大尺度深度可分离卷积,提高感受野的范围;通过引入残差分支,以串联的方式融合细化不同尺度的特征信息,提高对小尺度船舶目标的检测能力。基于Seaships数据集的试验结果表明,提出的模型与YOLOv5和YOLOX等相比,具有规模小、实时性好和检测精度高等优势。