电离层总电子含量(Total Electron Content,TEC)的监测与预报是空间环境研究的重要内容,对卫星通讯和导航定位等有重要意义.TEC值影响因素较多,很难确定精确物理模型来对其进行预测.本文设计了基于注意力机制的LSTM模型(Att-LSTM),采用...电离层总电子含量(Total Electron Content,TEC)的监测与预报是空间环境研究的重要内容,对卫星通讯和导航定位等有重要意义.TEC值影响因素较多,很难确定精确物理模型来对其进行预测.本文设计了基于注意力机制的LSTM模型(Att-LSTM),采用过去24小时TEC观测数据对未来TEC进行预测.选择北半球东经100°上,每2.5°纬度选择一个位置,共计36个位置来验证本文提出模型的性能,并与主流的深度学习模型如DNN、RNN、LSTM进行对比实验.取得了如下成果:(1)在选定的36个地区未来2小时单点预测上,基于本文的Att-LSTM模型的TEC预测性能明显优于其他对比模型;(2)讨论了纬度对Att-LSTM预测未来2小时TEC值时性能的影响,发现在北纬0°到60°之间,Att-LSTM预测性能随着纬度的升高而略有降低,在北纬62.5°~87.5°之间,模型预测性能出现扰动,预测效果略差;(3)讨论了磁暴期和磁静期模型的预测性能,发现无论是磁暴期还是磁静期,本文模型预测性能均较好;(4)还讨论了对未来多时点预测效果,实验结果表明,本文所提出的模型对未来2、4个小时的预测拟合度R-Square均超过0.95,预测结果比较可靠,对未来6、8、10个小时预测拟合度最高为0.7934,预测拟合度R-Square下降迅速,预测结果不可靠.展开更多
极低频电磁台网成功观测到大量的Pc1地磁脉动事件,研究极低频Pc1地磁脉动的自动识别方法对于全面分析地球空间电磁物理环境具有重要意义.本文采用了YOLOv8目标检测网络、ResNet残差网络和定向特征增强技术,提出了一种基于计算机视觉的Pc...极低频电磁台网成功观测到大量的Pc1地磁脉动事件,研究极低频Pc1地磁脉动的自动识别方法对于全面分析地球空间电磁物理环境具有重要意义.本文采用了YOLOv8目标检测网络、ResNet残差网络和定向特征增强技术,提出了一种基于计算机视觉的Pc1地磁脉动自动识别模型(Automatic Detection Model for Pc1 Geomagnetic Pulsation,简称ADM-Pc1).以大连台站和丽江台站的极低频观测数据为例,利用2015—2016年的数据作为训练集进行模型的监督学习,并使用2017—2022年的数据作为测试集对模型性能进行评估.实验结果显示,ADM-Pc1模型的F1-Score值达到了95%,错分率仅为0.9%,虚警率仅为5.8%,漏检率仅为9%,处理1天数据平均耗时是2.72 s,显著优于现有的最优识别模型.这表明,ADM-Pc1模型在识别效果和计算速度方面均能更好地满足实际工程需求.展开更多
电离层总电子含量(Total Electron Content,TEC)的预测是空间环境研究的重要内容,对卫星通讯和导航定位等有重要意义。设计了一个包含注意力机制的LSTM预测模型,利用连续5天的TEC来预测未来1天的TEC。在两个站点上将本文提出的模型与AR...电离层总电子含量(Total Electron Content,TEC)的预测是空间环境研究的重要内容,对卫星通讯和导航定位等有重要意义。设计了一个包含注意力机制的LSTM预测模型,利用连续5天的TEC来预测未来1天的TEC。在两个站点上将本文提出的模型与ARIMA和LSTM进行了对比实验。结果表明,所提模型的拟合程度可达0.9965,明显优于对比模型。展开更多
文摘电离层总电子含量(Total Electron Content,TEC)的监测与预报是空间环境研究的重要内容,对卫星通讯和导航定位等有重要意义.TEC值影响因素较多,很难确定精确物理模型来对其进行预测.本文设计了基于注意力机制的LSTM模型(Att-LSTM),采用过去24小时TEC观测数据对未来TEC进行预测.选择北半球东经100°上,每2.5°纬度选择一个位置,共计36个位置来验证本文提出模型的性能,并与主流的深度学习模型如DNN、RNN、LSTM进行对比实验.取得了如下成果:(1)在选定的36个地区未来2小时单点预测上,基于本文的Att-LSTM模型的TEC预测性能明显优于其他对比模型;(2)讨论了纬度对Att-LSTM预测未来2小时TEC值时性能的影响,发现在北纬0°到60°之间,Att-LSTM预测性能随着纬度的升高而略有降低,在北纬62.5°~87.5°之间,模型预测性能出现扰动,预测效果略差;(3)讨论了磁暴期和磁静期模型的预测性能,发现无论是磁暴期还是磁静期,本文模型预测性能均较好;(4)还讨论了对未来多时点预测效果,实验结果表明,本文所提出的模型对未来2、4个小时的预测拟合度R-Square均超过0.95,预测结果比较可靠,对未来6、8、10个小时预测拟合度最高为0.7934,预测拟合度R-Square下降迅速,预测结果不可靠.
文摘极低频电磁台网成功观测到大量的Pc1地磁脉动事件,研究极低频Pc1地磁脉动的自动识别方法对于全面分析地球空间电磁物理环境具有重要意义.本文采用了YOLOv8目标检测网络、ResNet残差网络和定向特征增强技术,提出了一种基于计算机视觉的Pc1地磁脉动自动识别模型(Automatic Detection Model for Pc1 Geomagnetic Pulsation,简称ADM-Pc1).以大连台站和丽江台站的极低频观测数据为例,利用2015—2016年的数据作为训练集进行模型的监督学习,并使用2017—2022年的数据作为测试集对模型性能进行评估.实验结果显示,ADM-Pc1模型的F1-Score值达到了95%,错分率仅为0.9%,虚警率仅为5.8%,漏检率仅为9%,处理1天数据平均耗时是2.72 s,显著优于现有的最优识别模型.这表明,ADM-Pc1模型在识别效果和计算速度方面均能更好地满足实际工程需求.
文摘电离层总电子含量(Total Electron Content,TEC)的预测是空间环境研究的重要内容,对卫星通讯和导航定位等有重要意义。设计了一个包含注意力机制的LSTM预测模型,利用连续5天的TEC来预测未来1天的TEC。在两个站点上将本文提出的模型与ARIMA和LSTM进行了对比实验。结果表明,所提模型的拟合程度可达0.9965,明显优于对比模型。