随着电网系统的不断完善及用户数的不断增加,智能电网系统中存储的客户信息逐渐形成客户大数据,从这些数据中可以分析得到用户用电行为等一些潜在信息,因此如何从中挖掘出这些隐藏信息并利用此类信息来提升公司的效率成为本文研究重点...随着电网系统的不断完善及用户数的不断增加,智能电网系统中存储的客户信息逐渐形成客户大数据,从这些数据中可以分析得到用户用电行为等一些潜在信息,因此如何从中挖掘出这些隐藏信息并利用此类信息来提升公司的效率成为本文研究重点。提出一种联合基于密度的带噪空间聚类(density-based spatial clustering of application with noise,DBSCAN)算法与期望最大化(expectation maximization,EM)算法的高斯混合聚类算法,通过DBSCAN算法确定合适的k个聚类中心及迭代初始数据,再通过EM算法迭代出聚类结果。案例分析表明:和其他几种典型聚类算法相比,所提算法在分析大数据和挖掘电力客户用电行为信息方面更加快速和准确,可以更有效地对电力公司客户行为数据进行聚类分析。展开更多
文摘随着电网系统的不断完善及用户数的不断增加,智能电网系统中存储的客户信息逐渐形成客户大数据,从这些数据中可以分析得到用户用电行为等一些潜在信息,因此如何从中挖掘出这些隐藏信息并利用此类信息来提升公司的效率成为本文研究重点。提出一种联合基于密度的带噪空间聚类(density-based spatial clustering of application with noise,DBSCAN)算法与期望最大化(expectation maximization,EM)算法的高斯混合聚类算法,通过DBSCAN算法确定合适的k个聚类中心及迭代初始数据,再通过EM算法迭代出聚类结果。案例分析表明:和其他几种典型聚类算法相比,所提算法在分析大数据和挖掘电力客户用电行为信息方面更加快速和准确,可以更有效地对电力公司客户行为数据进行聚类分析。