离子交换法常被应用于胺液净化领域,但是在低碱液浓度下部分离子交换树脂难以再生,存在失效的问题。利用SEM、EDS、FT-IR和XPS等手段对树脂的失效原因进行分析,并利用电再生的方法对失效树脂的再生进行了探究。实验结果显示,树脂净化胺...离子交换法常被应用于胺液净化领域,但是在低碱液浓度下部分离子交换树脂难以再生,存在失效的问题。利用SEM、EDS、FT-IR和XPS等手段对树脂的失效原因进行分析,并利用电再生的方法对失效树脂的再生进行了探究。实验结果显示,树脂净化胺液前后的骨架和功能基团并未改变,但是硫元素的质量分数显著提升,结合S 2p光谱存在162.2 eV和163.4 eV 2个分裂峰,说明树脂失效的主要原因是吸附的硫离子难以解吸;对失效树脂施加电再生时树脂的交换容量提升了3.6倍,吸附的硫元素质量分数下降了57.5%,表明电再生的方式可以提高树脂的交换容量和树脂内硫离子的解吸程度。展开更多
为了提高电极的析氯活性并降低生产成本,采用热分解法制备低Ir掺杂的Ti/IrRuSnSbO_(x)电极,通过材料表征和电化学测试研究了电极的微观结构和电化学性能。结果表明,在0~30%范围内,随着Ir摩尔分数的增加,表面裂纹逐渐增多且加深,增大了...为了提高电极的析氯活性并降低生产成本,采用热分解法制备低Ir掺杂的Ti/IrRuSnSbO_(x)电极,通过材料表征和电化学测试研究了电极的微观结构和电化学性能。结果表明,在0~30%范围内,随着Ir摩尔分数的增加,表面裂纹逐渐增多且加深,增大了内表面活性面积占比,而析氯活性和析氯效率均先升高后降低,其中,掺杂摩尔分数10%的电极具有最低的电荷转移电阻、最高的反应速率,电流密度为10 mA/cm^(2)时析氯电位为1.118 V vs.SCE,析氯效率为99.6%。展开更多
文摘离子交换法常被应用于胺液净化领域,但是在低碱液浓度下部分离子交换树脂难以再生,存在失效的问题。利用SEM、EDS、FT-IR和XPS等手段对树脂的失效原因进行分析,并利用电再生的方法对失效树脂的再生进行了探究。实验结果显示,树脂净化胺液前后的骨架和功能基团并未改变,但是硫元素的质量分数显著提升,结合S 2p光谱存在162.2 eV和163.4 eV 2个分裂峰,说明树脂失效的主要原因是吸附的硫离子难以解吸;对失效树脂施加电再生时树脂的交换容量提升了3.6倍,吸附的硫元素质量分数下降了57.5%,表明电再生的方式可以提高树脂的交换容量和树脂内硫离子的解吸程度。
文摘为了提高电极的析氯活性并降低生产成本,采用热分解法制备低Ir掺杂的Ti/IrRuSnSbO_(x)电极,通过材料表征和电化学测试研究了电极的微观结构和电化学性能。结果表明,在0~30%范围内,随着Ir摩尔分数的增加,表面裂纹逐渐增多且加深,增大了内表面活性面积占比,而析氯活性和析氯效率均先升高后降低,其中,掺杂摩尔分数10%的电极具有最低的电荷转移电阻、最高的反应速率,电流密度为10 mA/cm^(2)时析氯电位为1.118 V vs.SCE,析氯效率为99.6%。