Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Fe...Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Felis catus) were trained to perform monocularly a contrast detection task by two-altemative forced choice method. The perceptual ability of each cat improved remarkably with learning as indicated by a significantly increased contrast sensitivity to visual stimuli. The learning effect displayed an evident specificity to the eye employed for learning but could partially transfer to the naive eye, prompting the possibility that contrast detection learning might cause neural plasticity before and after the information from both eyes are merged in the visual pathway. Further, the contrast sensitivity improvement was evident basically around the spatial frequency (SF) used for learning, which suggested that contrast detection learning effect showed, to some extent, a SF specificity. This study indicates that cat exhibits a property of contrast detection learning similar to human subjects and can be used as an animal model for subsequent investigations on the neural correlates that mediate learning-induced contrast sensitivity improvement in humans.展开更多
Perceptual learning of orientation discrimination was investigated using cats. Two adult cats (Cat 1 and 2) were trained to monocularly discriminate between two static striped sinusoidal grates with 30° orienta...Perceptual learning of orientation discrimination was investigated using cats. Two adult cats (Cat 1 and 2) were trained to monocularly discriminate between two static striped sinusoidal grates with 30° orientation difference. After greater than 80% correct performance was reached, cats were then required to monocularly perform a discrimination between two grates with consecutively shifting orientation difference(2°, 4°, 6°, 8°, 10°, 12°, 16°, 20°, 24°, 30°) . The staircase method (two correct-down and one error-up) was applied throughout the training to track the threshold of orientation difference that cats could detect. The performance of detecting grates with varied orientation difference was measured respectively for beth trained and untrained eyes before and after training. Our results showed that the learning effect of discrimination for grates with a fixed orientation difference transferred completely from the trained eye to the untrained eye, whereas the inter-eye transfer for detecting °ates with gradually reducing orientation difference was almost nonegrates. The two opposite learning effects in the same subject strongly suggest that different information processing mechanisms might mediate the learning processes.展开更多
基金Supported by Natural Science Foundation of Anhui Province(070413138)the foundation of Key Laboratory of Anhui Province and the Key Research Foundation from Education Department of Anhui Province(KJ2009A167)
文摘Psychological studies on human subjects show that contrast detection learning promote learner's sensitivity to visual stimulus contrast. The underlying neural mechanisms remain unknown. In this study, three cats (Felis catus) were trained to perform monocularly a contrast detection task by two-altemative forced choice method. The perceptual ability of each cat improved remarkably with learning as indicated by a significantly increased contrast sensitivity to visual stimuli. The learning effect displayed an evident specificity to the eye employed for learning but could partially transfer to the naive eye, prompting the possibility that contrast detection learning might cause neural plasticity before and after the information from both eyes are merged in the visual pathway. Further, the contrast sensitivity improvement was evident basically around the spatial frequency (SF) used for learning, which suggested that contrast detection learning effect showed, to some extent, a SF specificity. This study indicates that cat exhibits a property of contrast detection learning similar to human subjects and can be used as an animal model for subsequent investigations on the neural correlates that mediate learning-induced contrast sensitivity improvement in humans.
基金This work was supported by the Foundationfor Key Laboratories of Anhui Province andthe Initiating Fundfor Ph.D.in AnhuiNormal University
文摘Perceptual learning of orientation discrimination was investigated using cats. Two adult cats (Cat 1 and 2) were trained to monocularly discriminate between two static striped sinusoidal grates with 30° orientation difference. After greater than 80% correct performance was reached, cats were then required to monocularly perform a discrimination between two grates with consecutively shifting orientation difference(2°, 4°, 6°, 8°, 10°, 12°, 16°, 20°, 24°, 30°) . The staircase method (two correct-down and one error-up) was applied throughout the training to track the threshold of orientation difference that cats could detect. The performance of detecting grates with varied orientation difference was measured respectively for beth trained and untrained eyes before and after training. Our results showed that the learning effect of discrimination for grates with a fixed orientation difference transferred completely from the trained eye to the untrained eye, whereas the inter-eye transfer for detecting °ates with gradually reducing orientation difference was almost nonegrates. The two opposite learning effects in the same subject strongly suggest that different information processing mechanisms might mediate the learning processes.