In this paper, We give the sufficient conditions of the unstability of zero solution for the third order linear differential equation with periodic coefficients d^3x/dt^3+A(t)dx/dt+B(t)x=0.
In Ref [1] the asymptotic stability of nonlinear slowly changing system has been discussed .In Ref [2] the instability of solution for the order linear differential equaiton with varied coefficient has been discussed ...In Ref [1] the asymptotic stability of nonlinear slowly changing system has been discussed .In Ref [2] the instability of solution for the order linear differential equaiton with varied coefficient has been discussed .In this paper,we have discussed instability of solution for a class of the third order nonlinear diffeential equation by means of the metod of Refs [1] and [2] .展开更多
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
文摘In this paper, We give the sufficient conditions of the unstability of zero solution for the third order linear differential equation with periodic coefficients d^3x/dt^3+A(t)dx/dt+B(t)x=0.
文摘In Ref [1] the asymptotic stability of nonlinear slowly changing system has been discussed .In Ref [2] the instability of solution for the order linear differential equaiton with varied coefficient has been discussed .In this paper,we have discussed instability of solution for a class of the third order nonlinear diffeential equation by means of the metod of Refs [1] and [2] .
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.