期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
基于VMD-BiLSTM-WOA的短期风电功率预测 被引量:1
1
作者 史加荣 王双馨 《陕西科技大学学报》 北大核心 2024年第1期177-185,共9页
风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term... 风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term Memory Network, BiLSTM)以及鲸鱼优化算法(Whale Optimization Algorithm, WOA)的混合深度学习模型,以用于短期风电功率预测.首先,VMD将原始风电功率分解为多个子模态,有效减少了序列的波动性;然后对每个子模态分别建立BiLSTM模型,使用WOA对BiLSTM中的参数进行优化,以提高混合模型的效率和预测性能;最后将各个子模型的结果叠加得到最终预测结果.在实验中通过建立不同的比较模型来说明改进策略的有效性和优越性,结果表明所提的混合模型在风电功率预测中具有较高的预测精度. 展开更多
关键词 风电功率 变分模态分解 双向长短期记忆网络 鲸鱼优化 长短期记忆网络
下载PDF
结合矩阵补全的宽度协同过滤推荐算法
2
作者 史加荣 何攀 《智能系统学报》 CSCD 北大核心 2024年第2期299-306,共8页
协同过滤是推荐系统中最经典的方法之一,能够满足人们对个性化推荐任务的需求,但许多协同过滤算法在面对评分数据稀疏性问题时推荐效果不佳。为解决此问题,提出一种结合矩阵补全的宽度协同过滤推荐算法。先使用矩阵补全技术对用户项目... 协同过滤是推荐系统中最经典的方法之一,能够满足人们对个性化推荐任务的需求,但许多协同过滤算法在面对评分数据稀疏性问题时推荐效果不佳。为解决此问题,提出一种结合矩阵补全的宽度协同过滤推荐算法。先使用矩阵补全技术对用户项目评分矩阵进行补全,再利用补全后的矩阵对已评分的用户和项目分别寻找其近邻项,进而构造用户与项目的评分协同向量,最后使用宽度学习系统来构建用户项目与评分之间的复杂的非线性关系。在MovieLens和filmtrust数据集上对所提出算法的有效性进行检验。试验结果表明,与当前最先进的方法相比,该方法能够有效地缓解数据稀疏性问题,具有较低的计算复杂度,在一定程度上提升了推荐系统的性能。 展开更多
关键词 推荐系统 宽度学习系统 矩阵补全 宽度协同过滤 协同过滤 深度矩阵分解 数据稀疏性 深度学习
下载PDF
Givens矩阵的性质及其在迭代法中的应用
3
作者 雍龙泉 史加荣 刘三阳 《大学数学》 2024年第1期88-95,共8页
研究了2阶Givens矩阵的一些性质,该矩阵的特征值为复数,谱半径恰好为1;在此基础上通过多个例子展示了Givens矩阵在迭代法中的应用,并从理论上给出了分析.
关键词 Givens矩阵 特征值 谱半径 迭代法
下载PDF
数值微分中步长的选取
4
作者 雍龙泉 史加荣 曹成 《高师理科学刊》 2024年第9期76-80,共5页
数值微分是求解微分方程数值解的关键,通过多个实例分析了数值微分中步长的选取原则.为了避免由两个相近的数作减法运算而带来误差,在实际计算数值微分时,取适当的步长便可以得到较好的近似结果.
关键词 数值微分 步长 误差
下载PDF
振荡浮子式波能装置的功率计算分析及参数设计
5
作者 王德莉 李霁 +4 位作者 杨雯 任志聪 张晓燕 史加荣 姚继涛 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期406-414,共9页
波浪能是重要的可再生资源之一,提高波浪能装置的能量捕获率是波浪能规模化利用的关键。本文对波浪能的能量转换装置进行了研究,针对装置于不同摇荡条件下的最大平均输出功率、最优阻尼系数及相关参数进行演化分析及求解。利用牛顿定律... 波浪能是重要的可再生资源之一,提高波浪能装置的能量捕获率是波浪能规模化利用的关键。本文对波浪能的能量转换装置进行了研究,针对装置于不同摇荡条件下的最大平均输出功率、最优阻尼系数及相关参数进行演化分析及求解。利用牛顿定律及质心系、转动惯量等建立二自由度、四自由度波浪能转换装置耦合运动模型,基于时间离散化的差分原理求解,同时采用模拟退火算法降低时间复杂度,提出了改良的粒子群算法,得到较为准确的结果,为实际工程中波浪能的高效采集提供思路和途径。 展开更多
关键词 波能转换装置 纵摇 垂荡 耦合模式 振动力学原理 最大平均输出功率 参数设计 算法优化
下载PDF
基于GRU-BLS的超短期光伏发电功率预测 被引量:11
6
作者 史加荣 殷诏 《智慧电力》 北大核心 2023年第9期38-45,共8页
光伏发电功率的准确预测对电网的稳定运行具有重要的意义。针对深度学习训练耗时长和宽度学习特征提取能力弱等问题,将门控循环单元(GRU)与宽度学习系统(BLS)相融合,提出了用于超短期光伏发电功率预测的GRU-BLS模型。先使用GRU训练序列... 光伏发电功率的准确预测对电网的稳定运行具有重要的意义。针对深度学习训练耗时长和宽度学习特征提取能力弱等问题,将门控循环单元(GRU)与宽度学习系统(BLS)相融合,提出了用于超短期光伏发电功率预测的GRU-BLS模型。先使用GRU训练序列样本,再将所学习到的隐特征作为新的输入特征,最后在BLS中构造特征节点和增强节点以形成最终的特征。所建立的模型在保留深度学习高预测精度的前提下,有效地缩短了模型的训练时间。在实际的光伏发电数据集上进行实验,评估所提模型在不同季节和天气类型下的性能。实验结果表明:与长短期记忆(LSTM),GRU,BLS和LSTM-BLS等模型相比,GRU-BLS的RMSE值降低了23.89%~75.68%,且TIC值和MAPE值也得到了显著改善。 展开更多
关键词 光伏发电 功率预测 宽度学习系统 门控循环单元 长短期记忆
下载PDF
基于EEMD-CNN-GRU的短期风向预测 被引量:1
7
作者 史加荣 缑璠 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2023年第5期568-573,共6页
为了提高短期风向的预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元网络(Gated Recurrent Unit,GRU)的混合模型:EEMD-CNN-GRU.... 为了提高短期风向的预测精度,提出一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元网络(Gated Recurrent Unit,GRU)的混合模型:EEMD-CNN-GRU.针对风向序列的随机性和不平稳性等特点,先利用EEMD将数据分解成多个分量;再运用CNN的局部连接和权值共享来提取分量中的潜在特征;最后,使用GRU对CNN所提取的潜在特征进一步构建特征,叠加各分量的预测值,得到最终预测结果.实验结果表明:相对于BP神经网络和长短期记忆网络(Long Short-Term Memory,LSTM)等其他模型,本文所提出的预测方法取得了良好的性能. 展开更多
关键词 风向预测 集合经验模态分解 卷积神经网络 门控循环单元网络 长短期记忆网络
下载PDF
融合残差与VMD-ELM-LSTM的短期风速预测 被引量:7
8
作者 张琰妮 史加荣 +1 位作者 李津 云斯宁 《太阳能学报》 EI CAS CSCD 北大核心 2023年第9期340-347,共8页
准确可靠的风速预测有利于维护电力系统的安全运行。为提高预测精度,本文提出一种融合残差与变分模态分解(VMD)、极限学习机(ELM)、长短时记忆(LSTM)的短期风速预测模型。首先,VMD算法将风速序列分解为若干个子序列以降低原始数据复杂... 准确可靠的风速预测有利于维护电力系统的安全运行。为提高预测精度,本文提出一种融合残差与变分模态分解(VMD)、极限学习机(ELM)、长短时记忆(LSTM)的短期风速预测模型。首先,VMD算法将风速序列分解为若干个子序列以降低原始数据复杂度。接着将ELM作为初始预测引擎,用来提取各风速子序列特征。然后,对所有预测子序列进行重构,得到初步预测结果。为进一步挖掘原始风速序列中的不平稳特征,采用LSTM对初步预测结果的残差进行建模。最后,集成预测的残差与初步结果,得到最终的预测值。在真实风电场数据上开展实验,并将预测结果与其他模型对比。实验结果表明,所提模型能显著提升风速序列的预测性能。 展开更多
关键词 风力发电 风速预测 变分模态分解 长短时记忆 极限学习机 残差序列
下载PDF
基于最大信息系数的短期太阳辐射协同估计 被引量:1
9
作者 李津 史加荣 +1 位作者 张琰妮 云斯宁 《太阳能学报》 EI CAS CSCD 北大核心 2023年第9期286-294,共9页
提出一种短期太阳辐射估计的协同方法,即利用邻近站点数据来估计目标站点的太阳辐射。先利用最大信息系数对所有站点的相关数据进行特征选择。然后将特征选择后的数据作为输入,采用不同的机器学习模型进行估计。最后在实际数据上将协同... 提出一种短期太阳辐射估计的协同方法,即利用邻近站点数据来估计目标站点的太阳辐射。先利用最大信息系数对所有站点的相关数据进行特征选择。然后将特征选择后的数据作为输入,采用不同的机器学习模型进行估计。最后在实际数据上将协同估计的误差与仅采用目标站点的估计误差进行比较。实验结果表明协同估计对所有目标站点都有更高的精度和更低的误差。 展开更多
关键词 太阳辐射 机器学习 特征选择 协同估计 最大信息系数
下载PDF
低秩矩阵恢复算法综述 被引量:72
10
作者 史加荣 郑秀云 +1 位作者 魏宗田 杨威 《计算机应用研究》 CSCD 北大核心 2013年第6期1601-1605,共5页
将鲁棒主成分分析、矩阵补全和低秩表示统称为低秩矩阵恢复,并对近年来出现的低秩矩阵恢复算法进行了简要的综述。讨论了鲁棒主成分分析的各种优化模型及相应的迭代算法,分析了矩阵补全问题及求解它的不精确增广拉格朗日乘子算法,介绍... 将鲁棒主成分分析、矩阵补全和低秩表示统称为低秩矩阵恢复,并对近年来出现的低秩矩阵恢复算法进行了简要的综述。讨论了鲁棒主成分分析的各种优化模型及相应的迭代算法,分析了矩阵补全问题及求解它的不精确增广拉格朗日乘子算法,介绍了低秩表示的优化模型及求解算法。最后指出了有待进一步研究的问题。 展开更多
关键词 低秩矩阵恢复 鲁棒主成分分析 矩阵补全 低秩表示 增广拉格朗日乘子算法
下载PDF
矩阵补全算法研究进展 被引量:14
11
作者 史加荣 郑秀云 周水生 《计算机科学》 CSCD 北大核心 2014年第4期13-20,共8页
作为压缩感知理论的重要发展,矩阵补全与恢复已成为信号与图像处理的一种新的强有力的工具。综述了矩阵补全算法的最新研究进展。首先分析了核范数最小化模型的几种主要的矩阵补全算法,并对这些算法的迭代过程及原理进行了详细的阐述。... 作为压缩感知理论的重要发展,矩阵补全与恢复已成为信号与图像处理的一种新的强有力的工具。综述了矩阵补全算法的最新研究进展。首先分析了核范数最小化模型的几种主要的矩阵补全算法,并对这些算法的迭代过程及原理进行了详细的阐述。其次讨论了矩阵补全的低秩矩阵分解模型,并列出了近年来出现的求解此模型的新算法。然后补充了上述两种模型的衍生版本,指出了相应的求解方法。在数值实验中,对文中所讨论的主要矩阵补全算法的性能进行了比较。最后给出了矩阵补全算法的未来研究方向及重点。 展开更多
关键词 矩阵补全 低秩 核范数最小化 低秩矩阵分解 压缩感知 低秩矩阵恢复
下载PDF
不完全非负矩阵分解的加速算法 被引量:13
12
作者 史加荣 焦李成 尚凡华 《电子学报》 EI CAS CSCD 北大核心 2011年第2期291-295,共5页
非负矩阵分解(NMF)已成为数据分析与处理的一种日益流行的方法.当数据矩阵不完全时,可用加权非负矩阵分解(WNMF)来分解矩阵.但是在WNMF算法中,对于给定的搜索方向,步长的选取一般来说不是最优的.本文研究了不完全非负矩阵分解(INMF)问题... 非负矩阵分解(NMF)已成为数据分析与处理的一种日益流行的方法.当数据矩阵不完全时,可用加权非负矩阵分解(WNMF)来分解矩阵.但是在WNMF算法中,对于给定的搜索方向,步长的选取一般来说不是最优的.本文研究了不完全非负矩阵分解(INMF)问题,提出了加速算法(AINMF).首先,将INMF问题转化为交替地求解两个非负最小二乘(NNLS)问题.对于每个NNLS问题,在搜索方向上采用精确的步长.接着,分析了NNLS问题的算法复杂度.最后,试验结果证实了AINMF优于WNMF. 展开更多
关键词 非负矩阵分解 不完全非负矩阵分解 数据丢失问题 加权非负矩阵分解 非负最小二乘
下载PDF
多线性鲁棒主成分分析 被引量:7
13
作者 史加荣 周水生 郑秀云 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1480-1486,共7页
鲁棒主成分分析(RPCA)是恢复低秩与稀疏成分的一种非常有效的方法.本文将RPCA推广到张量情形,提出了多线性鲁棒主成分分析(MRPCA)框架.首先建立了MRPCA模型,即最小化张量核范数与l1范数的加权组合.然后使用增广拉格朗日乘子法求解上述... 鲁棒主成分分析(RPCA)是恢复低秩与稀疏成分的一种非常有效的方法.本文将RPCA推广到张量情形,提出了多线性鲁棒主成分分析(MRPCA)框架.首先建立了MRPCA模型,即最小化张量核范数与l1范数的加权组合.然后使用增广拉格朗日乘子法求解上述张量核范数优化问题.实验结果证实:对于具有多线性结构的数据,MRPCA比RPCA更加鲁棒. 展开更多
关键词 多线性鲁棒主成分分析 鲁棒主成分分析 低秩 核范数最小化 增广拉格朗日乘子法
下载PDF
不完全信息的多属性决策问题的方案排序法 被引量:11
14
作者 史加荣 刘三阳 熊文涛 《系统工程》 CSCD 北大核心 2004年第7期99-101,共3页
针对不完全信息条件下的多属性决策问题建立一种模型,基于此模型提出方案排序的算法,且从理论上证明它的合理性。数值例子验证了该算法的有效性。
关键词 多属性决策 不完全信息 排序
下载PDF
非负张量分解的快速算法 被引量:3
15
作者 史加荣 杨威 姜淑艳 《计算机应用研究》 CSCD 北大核心 2011年第12期4475-4477,共3页
作为非负矩阵分解的多线性推广,非负张量分解已被成功地应用在信号处理、计算机视觉、数据挖掘和神经科学等领域中。提出了非负张量分解的一种快速算法。首先,将大的张量数据视做多元连续函数的离散化,对其进行采样得到一个小张量;其次... 作为非负矩阵分解的多线性推广,非负张量分解已被成功地应用在信号处理、计算机视觉、数据挖掘和神经科学等领域中。提出了非负张量分解的一种快速算法。首先,将大的张量数据视做多元连续函数的离散化,对其进行采样得到一个小张量;其次,对小张量执行非负分解,可得到它的重构张量;然后,对于采样后的重构张量,使用二维线性插值方法对原始张量进行重构;最后,实验结果表明快速张量分解算法的有效性。 展开更多
关键词 非负张量分解 非负矩阵分解 快速算法 采样 插值 重构
下载PDF
不完全鲁棒主成分分析的正则化方法及其在背景建模中的应用 被引量:3
16
作者 史加荣 郑秀云 杨威 《计算机应用》 CSCD 北大核心 2015年第10期2824-2827,2832,共5页
针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正... 针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正则项的加权组合;然后使用增广拉格朗日乘子法来求解所提出的凸优化模型,此算法具有良好的可扩展性和较低的计算复杂度;最后,将RIRPCA应用到视频背景建模中。实验结果表明,RIRPCA比矩阵补全和不完全RPCA等方法在恢复丢失元素和分离前景上具有优越性。 展开更多
关键词 鲁棒主成分分析 低秩矩阵恢复 背景建模 核范数最小化 增广拉格朗日乘子法
下载PDF
随机梯度下降算法研究进展 被引量:75
17
作者 史加荣 王丹 +1 位作者 尚凡华 张鹤于 《自动化学报》 EI CAS CSCD 北大核心 2021年第9期2103-2119,共17页
在机器学习领域中,梯度下降算法是求解最优化问题最重要、最基础的方法.随着数据规模的不断扩大,传统的梯度下降算法已不能有效地解决大规模机器学习问题.随机梯度下降算法在迭代过程中随机选择一个或几个样本的梯度来替代总体梯度,以... 在机器学习领域中,梯度下降算法是求解最优化问题最重要、最基础的方法.随着数据规模的不断扩大,传统的梯度下降算法已不能有效地解决大规模机器学习问题.随机梯度下降算法在迭代过程中随机选择一个或几个样本的梯度来替代总体梯度,以达到降低计算复杂度的目的.近年来,随机梯度下降算法已成为机器学习特别是深度学习研究的焦点.随着对搜索方向和步长的不断探索,涌现出随机梯度下降算法的众多改进版本,本文对这些算法的主要研究进展进行了综述.将随机梯度下降算法的改进策略大致分为动量、方差缩减、增量梯度和自适应学习率等四种.其中,前三种主要是校正梯度或搜索方向,第四种对参数变量的不同分量自适应地设计步长.着重介绍了各种策略下随机梯度下降算法的核心思想、原理,探讨了不同算法之间的区别与联系.将主要的随机梯度下降算法应用到逻辑回归和深度卷积神经网络等机器学习任务中,并定量地比较了这些算法的实际性能.文末总结了本文的主要研究工作,并展望了随机梯度下降算法的未来发展方向. 展开更多
关键词 随机梯度下降算法 机器学习 深度学习 梯度下降算法 大规模学习 逻辑回归 卷积神经网络
下载PDF
基于奇异值分解的气象数据推测 被引量:6
18
作者 史加荣 杨柳 《气象学报》 CAS CSCD 北大核心 2020年第1期128-142,共15页
以中国662个气象台站的2004-2013年逐日平均气温、平均相对湿度、日照时数和气温日较差4个气象要素为研究对象,使用奇异值分解方法来推测缺失气象数据.为降低随机的不利影响,将10年的逐日气象数据做平均.分别采用奇异值分解的相对误差... 以中国662个气象台站的2004-2013年逐日平均气温、平均相对湿度、日照时数和气温日较差4个气象要素为研究对象,使用奇异值分解方法来推测缺失气象数据.为降低随机的不利影响,将10年的逐日气象数据做平均.分别采用奇异值分解的相对误差和相似度矩阵来证实气象数据的近似低秩性,并探讨气象要素之间的相关.分析主要的基向量,设计3组推测试验.第1组试验随机选取6个气象台站的数据用于测试,其余台站用于训练,以获得5个最佳的基向量.随机选取每个测试台站的12个观测值,再由所选取的基向量来推测未知值.平均气温、平均相对湿度、日照时数和气温日较差的平均推测误差分别为8.00%、7.83%、17.17%和10.82%.在第2组试验中,随机选取70%的气象台站用于训练,其余气象台站用于验证推测性能.试验结果表明基向量的数目可选为5-15,随着基向量或观测值数量的增加,推测性能也随之改善.第3组试验,根据10个台站1952年下半年的气象观测数据,推测上半年的未观测值,试验结果合理可靠. 展开更多
关键词 气象数据推测 奇异值分解 低秩性 基向量
下载PDF
基于非负稀疏表示的人脸识别 被引量:2
19
作者 史加荣 杨威 魏宗田 《计算机工程与设计》 CSCD 北大核心 2012年第5期2002-2006,共5页
对稀疏表示在人脸识别中的应用进行了研究,提出了人脸识别的非负稀疏表示方法和采样方法。提出了非负稀疏表示的乘性迭代算法,分析了该方法与非负矩阵分解的联系,设计了基于非负稀疏表示的分类算法。在仿射传播算法的基础上,提出了人脸... 对稀疏表示在人脸识别中的应用进行了研究,提出了人脸识别的非负稀疏表示方法和采样方法。提出了非负稀疏表示的乘性迭代算法,分析了该方法与非负矩阵分解的联系,设计了基于非负稀疏表示的分类算法。在仿射传播算法的基础上,提出了人脸数据集的采样方法,并在人脸图像集上进行了实验。与稀疏表示相比,非负稀疏表示在计算复杂度和鲁棒性上具有优越性;与随机采样方法相比,该采样方法具有较高的识别精度。 展开更多
关键词 稀疏表示 非负稀疏表示 人脸识别 仿射传播 采样 非负矩阵分解
下载PDF
基于RR-VMD-LSTM的短期风电功率预测 被引量:40
20
作者 史加荣 赵丹梦 +1 位作者 王琳华 姜天祥 《电力系统保护与控制》 CSCD 北大核心 2021年第21期63-70,共8页
准确的风电功率预测有利于电力系统运行、峰值调节、安全分析和节能减耗。提出了一种基于鲁棒回归(Robust Regression,RR)和变分模态分解(Variational Mode Decomposition,VMD)的长短时记忆(Long Short-Term Memory,LSTM)模型的风电功... 准确的风电功率预测有利于电力系统运行、峰值调节、安全分析和节能减耗。提出了一种基于鲁棒回归(Robust Regression,RR)和变分模态分解(Variational Mode Decomposition,VMD)的长短时记忆(Long Short-Term Memory,LSTM)模型的风电功率预测方法。先使用RR处理采集数据的缺失值和异常点。再利用VMD得到风电功率序列以消除噪声并挖掘原始序列的主要特征。最后采用LSTM对每个分解序列的历史时间序列进行学习并完成预测,并通过重构所有序列的预测值获得风电功率的最终结果。使用所提出的方法对华北某一风电场风电功率进行预测,将预测结果与其他模型对比。结果表明,使用RR-VMD-LSTM方法能显著改善预测性能,降低风电功率预测误差? 展开更多
关键词 风电功率 短期预测 鲁棒回归 变分模态分解 长短时记忆
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部