The crystal plasticity was implemented in the finite element method(FEM) software ABAQUS through the user subroutine UMAT. By means of discretizing the space at the grain level with the Voronoi diagram method, a polyc...The crystal plasticity was implemented in the finite element method(FEM) software ABAQUS through the user subroutine UMAT. By means of discretizing the space at the grain level with the Voronoi diagram method, a polycrystal model was built and used in the FEM analysis. The initial orientation of each grain was generated based on the orientation distribution function(ODF). The developed model was successfully applied in simulation of polycrystalline aluminium samples deformed by the tensile tests. The theoretical strain—stress relation was in good agreement with the experimental result. The simulation results show that the grain size has significant effect on the deformation behavior. The initial plastic deformation usually occurs at grain boundaries, and multiple slip often results in an enhanced local hardening at grain boundaries.展开更多
The crystal plasticity finite element method(CPFEM),which incorporates the crystal plasticity constitutive law into the finite element method,was developed to investigate the rolling processes of the cubic oriented an...The crystal plasticity finite element method(CPFEM),which incorporates the crystal plasticity constitutive law into the finite element method,was developed to investigate the rolling processes of the cubic oriented and Goss oriented Al single crystal. The simulation results show that after rolling the crystal predominantly rotates around the transverse direction(TD) for both orientations. The rotations around the rolling direction(RD) and the normal direction(ND) are negligible. The reduction plays a significant role in the texture evolution. The TD rotation angle increases with increasing reduction. The deformation bands exist in the rolled specimens with the cubic initial orientation. Compared with the cubic oriented specimens,the TD rotation angles in the Goss oriented specimens are very small.展开更多
文摘The crystal plasticity was implemented in the finite element method(FEM) software ABAQUS through the user subroutine UMAT. By means of discretizing the space at the grain level with the Voronoi diagram method, a polycrystal model was built and used in the FEM analysis. The initial orientation of each grain was generated based on the orientation distribution function(ODF). The developed model was successfully applied in simulation of polycrystalline aluminium samples deformed by the tensile tests. The theoretical strain—stress relation was in good agreement with the experimental result. The simulation results show that the grain size has significant effect on the deformation behavior. The initial plastic deformation usually occurs at grain boundaries, and multiple slip often results in an enhanced local hardening at grain boundaries.
文摘The crystal plasticity finite element method(CPFEM),which incorporates the crystal plasticity constitutive law into the finite element method,was developed to investigate the rolling processes of the cubic oriented and Goss oriented Al single crystal. The simulation results show that after rolling the crystal predominantly rotates around the transverse direction(TD) for both orientations. The rotations around the rolling direction(RD) and the normal direction(ND) are negligible. The reduction plays a significant role in the texture evolution. The TD rotation angle increases with increasing reduction. The deformation bands exist in the rolled specimens with the cubic initial orientation. Compared with the cubic oriented specimens,the TD rotation angles in the Goss oriented specimens are very small.