K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法...K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法进行讨论,构造了全离散的Chebyshev有理谱格式,并通过对近似解的一系列先验估计,最后得到了近似解的误差估计.展开更多
文摘K lein-Gordon-Schr d inger(KGS)方程是出现在某些物理问题中一类重要方程,对它的解的理论和有界区域问题的数值解法已有不少研究,但对于无界区域问题的数值方法研究甚少.讨论具弱阻尼的KGS方程的Cauchy问题,采用Chebyshev有理谱方法进行讨论,构造了全离散的Chebyshev有理谱格式,并通过对近似解的一系列先验估计,最后得到了近似解的误差估计.