The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energy...The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.展开更多
The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard ...The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.展开更多
The Large High Altitude Air Shower Observatory(LHAASO)(Fig.1)is located at Mt.Haizi(4410 m a.s.l.,600 g/cm^(2),29°21'27.56"N,100°08'19.66"E)in Daocheng,Sichuan province,P.R.China.LHAASO con...The Large High Altitude Air Shower Observatory(LHAASO)(Fig.1)is located at Mt.Haizi(4410 m a.s.l.,600 g/cm^(2),29°21'27.56"N,100°08'19.66"E)in Daocheng,Sichuan province,P.R.China.LHAASO consists of 1.3 km^(2) array(KM2A)of electromagnetic particle detectors(ED)and muon detectors(MD),a water Cherenkov detector array(WCDA)with a total active area of 78,000 m^(2),18 wide field-of-view air Cherenkov telescopes(WFCTA)and a newly proposed electron-neutron detector array(ENDA)covering 10,000 m^(2).Each detector is synchronized with all the other through a clock synchronization network based on the White Rabbit protocol.The observatory includes an IT center which comprises the data acquisition system and trigger system,the data analysis facility.In this Chapter,all the above-mentioned components of LHAASO as well as infrastructure are described.展开更多
The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called "knee" by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC...The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called "knee" by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100-700 TeV). The observed energy spectrum is compatible with a single power law with index γ=-2.63±0.06.展开更多
The Large High Altitude Air Shower Observatory(LHAASO) is to be built at Daocheng, Sichuan Province, China. As one of the major components of the LHAASO project, a Water Cherenkov Detector Array(WCDA), with an are...The Large High Altitude Air Shower Observatory(LHAASO) is to be built at Daocheng, Sichuan Province, China. As one of the major components of the LHAASO project, a Water Cherenkov Detector Array(WCDA), with an area of 78000 m^2, contains 350000 tons of purified water. The water transparency and its stability are critical for successful long-term operation of this project. To gain full knowledge of the water Cherenkov technique and investigate the engineering issues, a 9-cell detector array has been built at the Yangbajing site, Tibet, China. With the help of the distribution of single cosmic muon signals, the monitoring and measurement of water transparency are studied. The results show that a precision of several percent can be obtained for the attenuation length measurement,which satisfies the requirements of the experiment. In the near future, this method could be applied to the LHAASOWCDA project.展开更多
In order to observe gamma rays in the 100 TeV energy region, the 4500 m2 underground muon detector array using water Cherenkov technique is constructed, forming the TIBET Ⅲ+MD hybrid array. Because the showers induc...In order to observe gamma rays in the 100 TeV energy region, the 4500 m2 underground muon detector array using water Cherenkov technique is constructed, forming the TIBET Ⅲ+MD hybrid array. Because the showers induced by primary gamma rays contain much fewer muons than those induced by primary hadrons, significant improvement of the gamma ray sensitivity for TIBET Ⅲ+MD array is expected. In this paper, the design and performance of the MD-A detector with large Tyvek bag is reported.展开更多
LHAASO-WCDA is a large ground-based water Cherenkov detector array planned to be built at ShangriLa, Yunnan Province, China. As a major component of the LHAASO project, the main purpose of LHAASO-WCDA is to survey the...LHAASO-WCDA is a large ground-based water Cherenkov detector array planned to be built at ShangriLa, Yunnan Province, China. As a major component of the LHAASO project, the main purpose of LHAASO-WCDA is to survey the northern sky for very-high-energy(above 100 GeV) gamma ray sources and measure the spectrum. To gain full knowledge of the water Cherenkov technique and to investigate the engineering issues, a 9-cell detector array has been built at the Yang-Ba-Jing site, neighboring the ARGO-YBJ experiment. With the array, charge calibration methods for both low and high ranges of the PMT readout are studied, whose result shows that a precision at several percentages can be reached, which can satisfy the requirement of the detector array. During the long term operation, the charge calibration stability and environmental afection are studied; in this paper, the results are discussed. These calibration methods are proposed to be applied in the future LHAASO-WCDA project.展开更多
Extra-galactic gammaray sources,such as gamma-ray bursts,active galactic nuclei,starburst galaxies,are interesting and important targets for LHAASO observations.In this chapter,the prospects of detecting these sources...Extra-galactic gammaray sources,such as gamma-ray bursts,active galactic nuclei,starburst galaxies,are interesting and important targets for LHAASO observations.In this chapter,the prospects of detecting these sources with LHAASO and their physical implications are studied.The upgrade plan for the Water Cherenkov Detector Array(WCDA),which aims to enhance the detectability of relatively lower energy photons,is also presented.In addition,a study on constraining the extragalactic background light with LHAASO observation of blazars is presented.展开更多
Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November--2005 November), our previous northern sky survey for TeV γ-ray point sources has now...Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November--2005 November), our previous northern sky survey for TeV γ-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.0° to 60.0° in declination (Dec) range, no new TeV T-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.展开更多
It is prpopsed that a water Cherenkov detector array, LHAASO-WCDA, is to be built at Shangri-la, Yunnan Province, China. As one of the major components of the LHAASO project, the main purpose of it is to survey the no...It is prpopsed that a water Cherenkov detector array, LHAASO-WCDA, is to be built at Shangri-la, Yunnan Province, China. As one of the major components of the LHAASO project, the main purpose of it is to survey the northern sky for gamma ray sources in the energy range of 100 GeV-30 TeV. In order to design the water Cherenkov array efficiently to economize the budget, a Monte Carlo simulation is carried out. With the help of the simulation, the cost performance of different configurations of the array are obtained and compared with each other, serving as a guide for the more detailed design of the experiment in the next step.展开更多
A γhadron separation analysis is described for the observed air shower events with primary energy above 100 TeV based on the Tibet ASγ detector configuration. The shower age and size parameters are fitted from the m...A γhadron separation analysis is described for the observed air shower events with primary energy above 100 TeV based on the Tibet ASγ detector configuration. The shower age and size parameters are fitted from the measured lateral density distribution and used as discrimination variables. According to the MC simulation while taking into account the systematic uncertainty estimated from data and MC comparison, it is found that 70% of the cosmic ray (CR) background can be rejected while more than 78% of the T-rays can be retained. Sensitivity for 100 TeV γ-rays observation can thus be improved by at least 40%.展开更多
The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,202...The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,2021.The number of shower events that meet the trigger conditions increases significantly in atmospheric electric fields,with a maximum fractional increase of 20%.The variations in trigger rates(increases or decreases)were found to be strongly dependent on the primary zenith angle.The flux of secondary particles increased significantly,following a trend similar to that of shower events.To better understand the observed behavior,Monte Carlo simulations were performed with CORSIKA and G4KM2A(a code based on GEANT4).We found that the experimental data(in saturated negative fields)were in good agreement with the simulations,assuming the presence of a uniform electric field of-700 V/cm with a thickness of 1500 m in the atmosphere above the observation level.Due to the acceleration/deceleration by the atmospheric electric field,the number of secondary particles with energy above the detector threshold was modified,resulting in the changes in shower detection rate.展开更多
We study the sidereal and solar time modulation of multi-TeV cosmic rays using the east-west method with Tibet air shower array data taken from November 1999 to December 2008. The statistics are twice the amount used ...We study the sidereal and solar time modulation of multi-TeV cosmic rays using the east-west method with Tibet air shower array data taken from November 1999 to December 2008. The statistics are twice the amount used in our previous paper. In this analysis, the amplitude of the observed sidereal time modulation is about 0.1%, and the modulation shows an excess from about 4 to 7 hours and a deficit around 12 hours in local sidereal time. The sidereal time modulation has a weak dependence on the primary energy of the cosmic rays. However, the solar time modulation shows a large energy dependence. We find that the solar time modulation is fairly consistent with the prediction of the Compton-Getting effect for high-energy samples (6.2TeV and 12.0TeV), but exceeds the prediction for the low-energy sample (4.0TeV). Such a discrepancy may be due to the solar modulation or the characteristics of the experimental device in the near threshold energy.展开更多
The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under con...The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN).展开更多
基金Supported by the National Key R&D Program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203,2018YFA0404204)the National Natural Science Foundation of China(12022502,12205314,12105301,12261160362,12105294,U1931201)+2 种基金the Youth Innovation Promotion Association CAS(2022010)in Thailand by the National Science and Technology Development Agency(NSTDA)the National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)。
文摘The full array of the Large High Altitude Air Shower Observatory(LHAASO)has been in operation since July 2021.For its kilometer-square array(KM2A),we optimized the selection criteria for very high and ultrahigh energyγ-rays using data collected from August 2021 to August 2022,resulting in an improvement in significance of the detection in the Crab Nebula of approximately 15%,compared with that of previous cuts.With the implementation of these new selection criteria,the angular resolution was also significantly improved by approximately 10%at tens of TeV.Other aspects of the full KM2A array performance,such as the pointing error,were also calibrated using the Crab Nebula.The resulting energy spectrum of the Crab Nebula in the energy range of 10-1000 TeV are well fitted by a log-parabola model,which is consistent with the previous results from LHAASO and other experiments.
基金Supported by the following grants:the National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203)the National Natural Science Foundation of China(12022502,11905227,U1931112,11635011,11761141001,Y811A35,11675187,U1831208,U1931111)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The first Water Cherenkov detector of the LHAASO experiment(WCDA-1)has been operating since April 2019.The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle.The WCDA-1 achieves a sensitivity of 65 mCU per year,with a statistical threshold of 5 cr.To accomplish this,a 97.7%cosmic-ray background rejection rate around 1 TeV and 99.8%around 6 TeV with an ap proximate photon acceptance of 50%is achieved after applying an algorithm to separate gamma-induced showers.The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45°at 1 TeV and better than 0.2°above 6 TeV,with a pointing accuracy better than 0.05°.These values all match the design specifications.The energy resolution is found to be 33%for gamma rays around 6 TeV.The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.
基金Supported by National Natural Science Foundation in China(NSFC)(U2031103,U1831208,11805209,11775233)NSFC for Distinguished Young Scholars(12025502)+1 种基金the Science and Technology Department of Sichuan Province(2021YFSY0031)the International Partnership Program of Chinese Academy of Sciences(113111KYSB20170055)。
文摘The Large High Altitude Air Shower Observatory(LHAASO)(Fig.1)is located at Mt.Haizi(4410 m a.s.l.,600 g/cm^(2),29°21'27.56"N,100°08'19.66"E)in Daocheng,Sichuan province,P.R.China.LHAASO consists of 1.3 km^(2) array(KM2A)of electromagnetic particle detectors(ED)and muon detectors(MD),a water Cherenkov detector array(WCDA)with a total active area of 78,000 m^(2),18 wide field-of-view air Cherenkov telescopes(WFCTA)and a newly proposed electron-neutron detector array(ENDA)covering 10,000 m^(2).Each detector is synchronized with all the other through a clock synchronization network based on the White Rabbit protocol.The observatory includes an IT center which comprises the data acquisition system and trigger system,the data analysis facility.In this Chapter,all the above-mentioned components of LHAASO as well as infrastructure are described.
基金Supported by NSFC(10975145,11075170)Knowledge Innovation Fund(H85451D0U2)of IHEP+2 种基金Chinese Ministry of Science and Technology,Chinese Academy of Science,Key Laboratory of Particle Astrophysics,CASin Italy by the Istituto Nazionale di Fisica Nucleare(INFN)Ministero dell’Istruzione,dell’Università e della Ricerca(MIUR)
文摘The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured below the so-called "knee" by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100-700 TeV). The observed energy spectrum is compatible with a single power law with index γ=-2.63±0.06.
基金Supported by U1332201,U1532258NSFC(11375224,11675187)
文摘The Large High Altitude Air Shower Observatory(LHAASO) is to be built at Daocheng, Sichuan Province, China. As one of the major components of the LHAASO project, a Water Cherenkov Detector Array(WCDA), with an area of 78000 m^2, contains 350000 tons of purified water. The water transparency and its stability are critical for successful long-term operation of this project. To gain full knowledge of the water Cherenkov technique and investigate the engineering issues, a 9-cell detector array has been built at the Yangbajing site, Tibet, China. With the help of the distribution of single cosmic muon signals, the monitoring and measurement of water transparency are studied. The results show that a precision of several percent can be obtained for the attenuation length measurement,which satisfies the requirements of the experiment. In the near future, this method could be applied to the LHAASOWCDA project.
基金Supported by Ministry of Science and Technology of China, National Natural Science Foundation of China (10725524, 11135010,10875132, 11105156)Chinese Academy of Sciences (KJCX2-YW-N13, GJHZ1004, 2A20093111116010)Knowledge Innovation Fund(H85451D1U2) of IHEP, China
文摘In order to observe gamma rays in the 100 TeV energy region, the 4500 m2 underground muon detector array using water Cherenkov technique is constructed, forming the TIBET Ⅲ+MD hybrid array. Because the showers induced by primary gamma rays contain much fewer muons than those induced by primary hadrons, significant improvement of the gamma ray sensitivity for TIBET Ⅲ+MD array is expected. In this paper, the design and performance of the MD-A detector with large Tyvek bag is reported.
基金to X.F.Yuan,G.Yang,W.Y.Chen and C.Y.Zhao for their essential support in the installation,commissioning and maintenance of the engineering array
文摘LHAASO-WCDA is a large ground-based water Cherenkov detector array planned to be built at ShangriLa, Yunnan Province, China. As a major component of the LHAASO project, the main purpose of LHAASO-WCDA is to survey the northern sky for very-high-energy(above 100 GeV) gamma ray sources and measure the spectrum. To gain full knowledge of the water Cherenkov technique and to investigate the engineering issues, a 9-cell detector array has been built at the Yang-Ba-Jing site, neighboring the ARGO-YBJ experiment. With the array, charge calibration methods for both low and high ranges of the PMT readout are studied, whose result shows that a precision at several percentages can be reached, which can satisfy the requirement of the detector array. During the long term operation, the charge calibration stability and environmental afection are studied; in this paper, the results are discussed. These calibration methods are proposed to be applied in the future LHAASO-WCDA project.
基金Supported by the National Key R&D program of China(2018YFA0404203)National Natural Science Foundation Of China(12121003,11625312)China Manned Space Project(CMS-CSST-2021-B11)。
文摘Extra-galactic gammaray sources,such as gamma-ray bursts,active galactic nuclei,starburst galaxies,are interesting and important targets for LHAASO observations.In this chapter,the prospects of detecting these sources with LHAASO and their physical implications are studied.The upgrade plan for the Water Cherenkov Detector Array(WCDA),which aims to enhance the detectability of relatively lower energy photons,is also presented.In addition,a study on constraining the extragalactic background light with LHAASO observation of blazars is presented.
基金Supported by Grants-in-Aid for Scientific Research on Priority Areas (712) (MEXT)Japan Society for Promotion of Science(JSPS)+1 种基金National Natural Science Foundation of China (10675134,10533020)Chinese Academy of Sciences
文摘Using the data taken from Tibet II High Density (HD) Array (1997 February-1999 September) and Tibet-III array (1999 November--2005 November), our previous northern sky survey for TeV γ-ray point sources has now been updated by a factor of 2.8 improved statistics. From 0.0° to 60.0° in declination (Dec) range, no new TeV T-ray point sources with sufficiently high significance were identified while the well-known Crab Nebula and Mrk421 remain to be the brightest TeV γ-ray sources within the field of view of the Tibet air shower array. Based on the currently available data and at the 90% confidence level (C.L.), the flux upper limits for different power law index assumption are re-derived, which are approximately improved by 1.7 times as compared with our previous reported limits.
基金Supported by NSFC(11175147)Knowledge Innovation Fund of IHEP,Beijing
文摘It is prpopsed that a water Cherenkov detector array, LHAASO-WCDA, is to be built at Shangri-la, Yunnan Province, China. As one of the major components of the LHAASO project, the main purpose of it is to survey the northern sky for gamma ray sources in the energy range of 100 GeV-30 TeV. In order to design the water Cherenkov array efficiently to economize the budget, a Monte Carlo simulation is carried out. With the help of the simulation, the cost performance of different configurations of the array are obtained and compared with each other, serving as a guide for the more detailed design of the experiment in the next step.
基金Supported by Chinese Academy of Sciences (KJCX2-YW-N13)External Cooperation Program of Chinese Academy of Sciences (GJHZ1004)+1 种基金National Natural Science Foundation of China (10725524, 10875132)supported by the Natural Science Foundation of Shandong Province, China (Q2006A02)
文摘A γhadron separation analysis is described for the observed air shower events with primary energy above 100 TeV based on the Tibet ASγ detector configuration. The shower age and size parameters are fitted from the measured lateral density distribution and used as discrimination variables. According to the MC simulation while taking into account the systematic uncertainty estimated from data and MC comparison, it is found that 70% of the cosmic ray (CR) background can be rejected while more than 78% of the T-rays can be retained. Sensitivity for 100 TeV γ-rays observation can thus be improved by at least 40%.
基金Supported in China by National Key R&D program of China(2018YFA0404201,2018YFA0404202,2018YFA0404203,2018YFA0404204)NSFC(U2031101,11475141,12147208)in Thailand by RTA6280002 from Thailand Science Research and Innovation。
文摘The Large High Altitude Air Shower Observatory(LHAASO)has three sub-arrays,KM2A,WCDA,and WFCTA.The flux variations of cosmic ray air showers were studied by analyzing the KM2A data during a thunderstorm on June 10,2021.The number of shower events that meet the trigger conditions increases significantly in atmospheric electric fields,with a maximum fractional increase of 20%.The variations in trigger rates(increases or decreases)were found to be strongly dependent on the primary zenith angle.The flux of secondary particles increased significantly,following a trend similar to that of shower events.To better understand the observed behavior,Monte Carlo simulations were performed with CORSIKA and G4KM2A(a code based on GEANT4).We found that the experimental data(in saturated negative fields)were in good agreement with the simulations,assuming the presence of a uniform electric field of-700 V/cm with a thickness of 1500 m in the atmosphere above the observation level.Due to the acceleration/deceleration by the atmospheric electric field,the number of secondary particles with energy above the detector threshold was modified,resulting in the changes in shower detection rate.
基金Supported by Natural Science Foundation of Shandong Province of China (ZR2009AM003)National Natural Science Foundation of China+1 种基金Chinese Academy of Sciences and Ministry of Education of ChinaInnovation Foundation of Shandong Agriculture University(23665)
文摘We study the sidereal and solar time modulation of multi-TeV cosmic rays using the east-west method with Tibet air shower array data taken from November 1999 to December 2008. The statistics are twice the amount used in our previous paper. In this analysis, the amplitude of the observed sidereal time modulation is about 0.1%, and the modulation shows an excess from about 4 to 7 hours and a deficit around 12 hours in local sidereal time. The sidereal time modulation has a weak dependence on the primary energy of the cosmic rays. However, the solar time modulation shows a large energy dependence. We find that the solar time modulation is fairly consistent with the prediction of the Compton-Getting effect for high-energy samples (6.2TeV and 12.0TeV), but exceeds the prediction for the low-energy sample (4.0TeV). Such a discrepancy may be due to the solar modulation or the characteristics of the experimental device in the near threshold energy.
基金Supported by National Natural Science Foundation of China(11761141001,11635011,11873005)The LHAASO project is supported by the National Key R&D Program of China(2018YFA0404200),the Chinese Academy of Sciences,the Key Laboratory of Particle Astrophysics,IHEP,CAS。
文摘The Water Cherenkov Detector Array(WCDA) is a major component of the Large High Altitude Air Shower Array Observatory(LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV γ-rays. In order to evaluate the prospects of searching for TeV γ-ray sources with WCDA, we present a projection of the one-year sensitivity of WCDA to TeV γ-ray sources from TeVCat using an all-sky approach. Out of 128 TeVCat sources observable by WCDA up to a zenith angle of 45°, we estimate that 42 would be detectable in one year of observations at a median energy of 1 TeV. Most of them are Galactic sources, and the extragalactic sources are Active Galactic Nuclei(AGN).