针对支持向量机(souport vector machine,SVM)训练学习过程中样本分布不均衡、难以获得大量带有类标注样本的问题,提出一种基于委员会投票选择(query by committee,QBC)的SVM主动学习算法QBC-ASVM,将改进的QBC主动学习方法与加权SVM方...针对支持向量机(souport vector machine,SVM)训练学习过程中样本分布不均衡、难以获得大量带有类标注样本的问题,提出一种基于委员会投票选择(query by committee,QBC)的SVM主动学习算法QBC-ASVM,将改进的QBC主动学习方法与加权SVM方法有机地结合应用于SVM训练学习中,通过改进的QBC主动学习,主动选择那些对当前SVM分类器最有价值的样本进行标注,在SVM主动学习中应用改进的加权SVM,减少了样本分布不均衡对SVM主动学习性能的影响,实验结果表明在保证不影响分类精度的情况下,所提出的算法需要标记的样本数量大大少于随机采样法需要标记的样本数量,降低了学习的样本标记代价,提高了SVM泛化性能而且训练速度同样有所提高。展开更多
文摘复杂背景抑制是天基红外预警系统中红外弱小目标探测技术的一个关键环节。为降低复杂背景下杂波干扰,提高目标检测精度,利用非下采样轮廓波变换(NSCT,non-subsampled contourlet transform)的多尺度分解及多方向分解特性以及图像矩阵奇异值分解(SVD,singular value decomposition)不同奇异值代表图像不同能量信息的特点,提出了联合NSCT和SVD的红外图像背景的抑制方法。首先依据非下采样轮廓波变换思想对红外原始图像进行多尺度多方向分解,得到与原始图像同样大小的不同尺度和不同方向上的子带图像,然后,利用奇异值分解的中序部分奇异值调整各子带图像矩阵系数以区分目标和背景杂波,最后对调整后各子带系数组成的矩阵施加NSCT逆变换,最终获得抑制背景处理后的图像。对比实验表明,该方法能够在低信噪比环境下有效抑制复杂背景及边缘,突显目标,降低虚警率。
文摘针对支持向量机(souport vector machine,SVM)训练学习过程中样本分布不均衡、难以获得大量带有类标注样本的问题,提出一种基于委员会投票选择(query by committee,QBC)的SVM主动学习算法QBC-ASVM,将改进的QBC主动学习方法与加权SVM方法有机地结合应用于SVM训练学习中,通过改进的QBC主动学习,主动选择那些对当前SVM分类器最有价值的样本进行标注,在SVM主动学习中应用改进的加权SVM,减少了样本分布不均衡对SVM主动学习性能的影响,实验结果表明在保证不影响分类精度的情况下,所提出的算法需要标记的样本数量大大少于随机采样法需要标记的样本数量,降低了学习的样本标记代价,提高了SVM泛化性能而且训练速度同样有所提高。