Kidney bean seed was dried in a laboratory scale fixed bed. The effect of seed coat on drying dynamic characteristics and the changes of seed coat structure were investigated. A mathematical model was established to s...Kidney bean seed was dried in a laboratory scale fixed bed. The effect of seed coat on drying dynamic characteristics and the changes of seed coat structure were investigated. A mathematical model was established to simulate the drying process and determine the moisture diffusivity. Numerical results agree well with the experimental data. The average moisture diffusivity of the seed with separated coat is 1.67 times larger than that of the seed with coat, and the moisture diffusivity of seed cotyledon is 3.2 times larger than that of the seed coat. It is proved that the seed coat is the most main resistance of mass transfer and is also one of the key points of the optimization of heat and mass transfer for seed drying.展开更多
A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmis...A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmission electron microscope,the authors of this paper observed the microstructure of cotyledon tissue slices of the Chinese cabbage seed with a moisture content of 13% (on dry basis) and that with a moisture content of 4.3% (on dry basis) for drying 2 h at 45 ℃.The compared result was that only wrinkles had been discovered on the cell walls of the seed dried for 2 h,without any significant change for other organelles.Study on the enzyme activity shows that after a germination for 48 h,the relative activity of α amylase of the Chinese cabbage seed dried for 2 h at 45 ℃,decreased by 5.8%,whereas that of the seed dried 2 h at a temperature of 67 ℃ decreased by 30.1%.This work shows that the drying factors have greatly influence on the seed microstructure,enzyme activity,which is directly positive to seed viability.Combined with the analysis of the critical safe drying temperature of the vegetable seed,it can be concluded that enzyme activity is also the function of the drying temperature,the moisture content and the drying time.展开更多
Here,we study the quantum coherence of N-partite Greenberger-Horne-Zeilinger(GHZ)and W states in the multiverse consisting of N causally disconnected de Sitter spaces.Interestingly,N-partite coherence increases monoto...Here,we study the quantum coherence of N-partite Greenberger-Horne-Zeilinger(GHZ)and W states in the multiverse consisting of N causally disconnected de Sitter spaces.Interestingly,N-partite coherence increases monotonically with curvature,whereas the curvature effect destroys quantum entanglement and discord,indicating that the curvature effect is beneficial to quantum coherence and harmful to quantum correlations in the multiverse.We find that with an increase in n expanding de Sitter spaces,the N-partite coherence of the GHZ state increases monotonically for any curvature,whereas the quantum coherence of the W state decreases or increases monotonically depending on the curvature.We find a distribution relationship,which indicates that the correlated coherence of the N-partite W state is equal to the sum of all bipartite correlated coherence in the multiverse.Multipartite coherence exhibits unique properties in the multiverse,suggesting that it may provide some evidence for the existence of the multiverse.展开更多
文摘Kidney bean seed was dried in a laboratory scale fixed bed. The effect of seed coat on drying dynamic characteristics and the changes of seed coat structure were investigated. A mathematical model was established to simulate the drying process and determine the moisture diffusivity. Numerical results agree well with the experimental data. The average moisture diffusivity of the seed with separated coat is 1.67 times larger than that of the seed with coat, and the moisture diffusivity of seed cotyledon is 3.2 times larger than that of the seed coat. It is proved that the seed coat is the most main resistance of mass transfer and is also one of the key points of the optimization of heat and mass transfer for seed drying.
基金the National Natural Science Foundation of China(No.597361 30 )
文摘A seed is the carrier of life,and research on the heat and mass transfer of a seed has already stridden toward the level of microcosm,such as cell protoplasm,cell organism,and molecular membrane.By means of a transmission electron microscope,the authors of this paper observed the microstructure of cotyledon tissue slices of the Chinese cabbage seed with a moisture content of 13% (on dry basis) and that with a moisture content of 4.3% (on dry basis) for drying 2 h at 45 ℃.The compared result was that only wrinkles had been discovered on the cell walls of the seed dried for 2 h,without any significant change for other organelles.Study on the enzyme activity shows that after a germination for 48 h,the relative activity of α amylase of the Chinese cabbage seed dried for 2 h at 45 ℃,decreased by 5.8%,whereas that of the seed dried 2 h at a temperature of 67 ℃ decreased by 30.1%.This work shows that the drying factors have greatly influence on the seed microstructure,enzyme activity,which is directly positive to seed viability.Combined with the analysis of the critical safe drying temperature of the vegetable seed,it can be concluded that enzyme activity is also the function of the drying temperature,the moisture content and the drying time.
基金Supported by the National Natural Science Foundation of China(12205133,1217050862,LJKQZ20222315,JYTMS20231051)。
文摘Here,we study the quantum coherence of N-partite Greenberger-Horne-Zeilinger(GHZ)and W states in the multiverse consisting of N causally disconnected de Sitter spaces.Interestingly,N-partite coherence increases monotonically with curvature,whereas the curvature effect destroys quantum entanglement and discord,indicating that the curvature effect is beneficial to quantum coherence and harmful to quantum correlations in the multiverse.We find that with an increase in n expanding de Sitter spaces,the N-partite coherence of the GHZ state increases monotonically for any curvature,whereas the quantum coherence of the W state decreases or increases monotonically depending on the curvature.We find a distribution relationship,which indicates that the correlated coherence of the N-partite W state is equal to the sum of all bipartite correlated coherence in the multiverse.Multipartite coherence exhibits unique properties in the multiverse,suggesting that it may provide some evidence for the existence of the multiverse.