草地叶面积指数(Leaf area index,LAI)是天然草地的重要结构参数,能够用来监测草地的生长状况和生产力水平,对草地资源可持续利用和科学管理具有重要意义。以内蒙古锡林郭勒盟典型草原为研究对象,首先使用无人机激光雷达(Airborne light...草地叶面积指数(Leaf area index,LAI)是天然草地的重要结构参数,能够用来监测草地的生长状况和生产力水平,对草地资源可持续利用和科学管理具有重要意义。以内蒙古锡林郭勒盟典型草原为研究对象,首先使用无人机激光雷达(Airborne light detection and ranging,Air-LiDAR)草地冠层观测数据,通过解析点云数据构建冠层高度模型(Canopy height model,CHM),随后进行研究区草地冠层间隙率计算,最后基于Beer-Lambert方法进行0.05 m、0.10 m、0.15 m、0.20 m 4个不同空间分辨率采样尺度下的LAI估算,并选择CHM低值、中值、高值3个不同子区域分别进行不同冠层高度下LAI的检验和分析。结果表明:(1)草地叶面积指数与冠层高度模型数值呈正相关、与冠层间隙率呈负相关。(2)机载LiDAR草地LAI估算的最优采样尺度为0.15 m,CHM不同高度子区域LAI结果检验R^(2)和RMSE分别为:低值区为0.66和0.04;中值区为0.54和0.34;高值区为0.54和1.17,表明无人机LiDAR可捕获草地冠层观测采样存在的异质性差异分布特征。(3)不同空间分辨率0.05~0.20 m间隔采样LAI结果表明,对于CHM低值、植被分布稀疏区域不同分辨率LAI无显著空间尺度变化差异,但CHM高值、较密植被分布群落LAI会随空间分辨率表现出尺度性差异。综上所述,本研究设计完成的无人机LiDAR草地LAI估算模型,参数机理具体、流程方法可操作性强,具有较好的数值检验精度,可为激光雷达在草地植被叶面积指数遥感反演及应用提供技术参考。展开更多