In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magn...In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magnetic separation process on bench scale. The results show that increasing the basicity (mass ratio of CaO to SIO2) of nickel slag facilitates the enrichment of nickel and copper The process parameters for selective reduction were optimized as follows: basicity of 0.15, reducing at 1200 ~C for 20 min, 5% coal on a dried slag mass base. The grinding-magnetic separation results of reduced briquettes show that concentrate containing 3.25%Ni, 1.20%Cu and 75.26%Fe is obtained and selective enrichment is achieved with a recovery of 82.20%, 80.00% for nickel and copper respectively, while the recovery of iron is only 42.17%. The S and P contents are not reduced obviously and further research may be needed to examine the behaviors of S and P in the process.展开更多
基金Project([2009]606)supported by the National Development and Reform Commission of ChinaProject(50974135)supported by the National Natural Science Foundation of China
文摘In order to utilize slag discarded by nickel plants, the selective recovery of nickel and copper versus iron was investigated by selective reduction, which was achieved by controlling the reduction parameters and magnetic separation process on bench scale. The results show that increasing the basicity (mass ratio of CaO to SIO2) of nickel slag facilitates the enrichment of nickel and copper The process parameters for selective reduction were optimized as follows: basicity of 0.15, reducing at 1200 ~C for 20 min, 5% coal on a dried slag mass base. The grinding-magnetic separation results of reduced briquettes show that concentrate containing 3.25%Ni, 1.20%Cu and 75.26%Fe is obtained and selective enrichment is achieved with a recovery of 82.20%, 80.00% for nickel and copper respectively, while the recovery of iron is only 42.17%. The S and P contents are not reduced obviously and further research may be needed to examine the behaviors of S and P in the process.