An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcat...An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcation. A pseudoclosed form complete solution for parametrically excited systems subjected to inhomogeneous generalized forcing is developed, based on the Fourier expansion of periodic matrices and the substitution of matrix exponential terms via Lagrange-Sylvester theorem. A Mathieu type of equation with large amplitude is presented to demonstrate the method of formulating state transition matrix and Floquet multipliers. A two-degree-of-freedom system with irregular time periodic stiffness characterized by spiral bevel gear mesh vibration is presented to find forced response in stability and instability. The obtained results are presented and discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50875009)the Defense Industrial Technology Development Program of China (Grant No. B0620060424)the Aviation Science Foundation of China (Grant No. 20090451009)
文摘An analytical form of state transition matrix for a system of equations with time periodic stiffness is derived in order to solve the free response and also allow for the determination of system stability and bifurcation. A pseudoclosed form complete solution for parametrically excited systems subjected to inhomogeneous generalized forcing is developed, based on the Fourier expansion of periodic matrices and the substitution of matrix exponential terms via Lagrange-Sylvester theorem. A Mathieu type of equation with large amplitude is presented to demonstrate the method of formulating state transition matrix and Floquet multipliers. A two-degree-of-freedom system with irregular time periodic stiffness characterized by spiral bevel gear mesh vibration is presented to find forced response in stability and instability. The obtained results are presented and discussed.