Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technol...Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technology. Recent development in Li-CO2 batteries is presented. The reaction mechanism with an air cathode, operating temperatures used, electrochemical performance under different CO2 concentrations, stability of the battery in different electrolytes, and utilization of different cathode materials were emphasized. At last, challenges and perspectives were also present- ed. This review provides a deep understanding of Li-CO2 batteries and offers important guidelines for developing reversible and high efficiency Li-CO2 batteries.展开更多
Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700℃. High-resolution transmission electron micros...Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.展开更多
The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/...The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/SiO2/Si substrate and Pt plate substrate by simple thermal chemical vapor deposition (STCVD) technique and the electrical measurements of individual MWCNT grown on silicon substrate and Pt plate substrate were performed by home-made 'nano-manipulator', respectively. According to current-voltage curves obtained in the experiments the current density that the MWCNTs can carry is calculated to be about 107 A/cm2, which is much larger than that of normal metals.展开更多
This paper reports that two kinds of polymers with high infrared transparency and good mechanical and physical properties have been prepared.An internal standard method is used to evaluate the infrared transparency of...This paper reports that two kinds of polymers with high infrared transparency and good mechanical and physical properties have been prepared.An internal standard method is used to evaluate the infrared transparency of the binders.The physical and mechanical properties of the binders are measured according to corresponding standards. The results show the absorbance of polymer A in 8-14 μm range is 26% that of the ethylene-vinyl acetate copolymer (EVA),and polymer B is 9% that of the EVA correspondingly.The film of polymer A shows good flexibility of above 1 mm,a hardness of grade 1,and adhesion of grade 2.The film of polymer B shows good flexibility of above 1 mm,a hardness of grade 1,and adhesion of grade 1.展开更多
The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The C...The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies, and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.展开更多
基金supported by the National Basic Research Program of China(973 Program,2014CB932302,2014CB932303)the National Natural Science Foundation of China(21403107,21373111)+2 种基金Natural Science Foundation of Jiangsu Province of China(BK20140055)Specialized Research Fund for the Doctoral Program of Higher Education of China(20120091120022),PAPD of Jiangsu Higher Education Institutionsthe Project on Union of Industry-Study-Research of Jiangsu Province(BY2015069-01)
文摘Rechargeable Li-CO2 batteries provide a promising new approach for carbon capture and energy storage technology. However, their practical application is limited by many challenges despite much progress in this technology. Recent development in Li-CO2 batteries is presented. The reaction mechanism with an air cathode, operating temperatures used, electrochemical performance under different CO2 concentrations, stability of the battery in different electrolytes, and utilization of different cathode materials were emphasized. At last, challenges and perspectives were also present- ed. This review provides a deep understanding of Li-CO2 batteries and offers important guidelines for developing reversible and high efficiency Li-CO2 batteries.
基金Project(KM200510772013) supported by the Science and Technology Development Program of Education Committee of Beijing City Project (2005-2007) supported by the Academic Innovative Team Program(Novel Sensor and Materials: Nanodevice and Nanomaterials) of Education Committee of Beijing City
文摘Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.
基金Project(KM200510772013) supported by the Science and Technology Development Program of Education Committee of Beijing City Project (2005 - 2007) supported by the Academic Innovative Team Program (Novel Sensor and Materials: Nanodevice and Nanomaterials) of Education Committee of Beijing City
文摘The characterization of electrical property of multi-walled carbon nanotubes (MWCNTs) on a nanometer scale is essential for their potential application in nano-electronic devices. The MWCNTs were synthesized on Fe2O3/SiO2/Si substrate and Pt plate substrate by simple thermal chemical vapor deposition (STCVD) technique and the electrical measurements of individual MWCNT grown on silicon substrate and Pt plate substrate were performed by home-made 'nano-manipulator', respectively. According to current-voltage curves obtained in the experiments the current density that the MWCNTs can carry is calculated to be about 107 A/cm2, which is much larger than that of normal metals.
基金Project supported by the National Natural Science Foundation of China (Grant No 20671043)
文摘This paper reports that two kinds of polymers with high infrared transparency and good mechanical and physical properties have been prepared.An internal standard method is used to evaluate the infrared transparency of the binders.The physical and mechanical properties of the binders are measured according to corresponding standards. The results show the absorbance of polymer A in 8-14 μm range is 26% that of the ethylene-vinyl acetate copolymer (EVA),and polymer B is 9% that of the EVA correspondingly.The film of polymer A shows good flexibility of above 1 mm,a hardness of grade 1,and adhesion of grade 2.The film of polymer B shows good flexibility of above 1 mm,a hardness of grade 1,and adhesion of grade 1.
基金Project(KM200510772013) supported by the Beijing City Education Committee Science and Technology Development ProgramProject( 2005?2007) supported by the Academic Innovative Team Program(Novel Sensor & Materials: Nanodevice & Nanomaterials) of Education Committee of Beijing City
文摘The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies, and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.