近几年来,生物传感器的研究工作发展非常迅速,新概念、新设想不断出现,使得生物传感器在环保,临床诊断、生命控制以及军事等方面的应用日趋广泛。葡萄糖酶(GOD)生物传感器是这类具有重要作用的生物传感器的一种,它不仅能测定葡萄糖,还...近几年来,生物传感器的研究工作发展非常迅速,新概念、新设想不断出现,使得生物传感器在环保,临床诊断、生命控制以及军事等方面的应用日趋广泛。葡萄糖酶(GOD)生物传感器是这类具有重要作用的生物传感器的一种,它不仅能测定葡萄糖,还能形成多酶体系,测定蔗糖、乳糖和磷酸根等物质。许多文章报导了 GOD 生物传感器的研究工作。我们曾报导过以聚吡咯为衬底,上面涂上 LB 膜的 GOD 生物传感器在医学领域内对发展微型和方便的 GOD 生物传感器的需求在不断的增加。为了使电极便于微型化,本工作在我们已制得的三电极的电池上加以改进。展开更多
A new route for the preparation of silver nanoshells on silica spheres, leading to the establishment of a simple, efficient and easy-to-scale-up way for the synthesis of smooth silver nanoshells on silica monodisperse...A new route for the preparation of silver nanoshells on silica spheres, leading to the establishment of a simple, efficient and easy-to-scale-up way for the synthesis of smooth silver nanoshells on silica monodispersed spheres, is reported through transforming the silver oxide shell to zero-valence silver by thermal cracking, applying surface strain theory to alter the shape of core-metal shell colloidal and form smooth metal nanoshell in hot inert flowing liquid. SEM images show that the silver nanoshells may be formed at 130 ℃ and deformed at 180 ℃ in hot inert flowing liquid. XRD indicates the formation of cubic structure pure silver with high crystallinity. Also, EDX and UV diffuse reflection spectrum analyses were conducted to characterize the as-prepared samples.展开更多
文摘近几年来,生物传感器的研究工作发展非常迅速,新概念、新设想不断出现,使得生物传感器在环保,临床诊断、生命控制以及军事等方面的应用日趋广泛。葡萄糖酶(GOD)生物传感器是这类具有重要作用的生物传感器的一种,它不仅能测定葡萄糖,还能形成多酶体系,测定蔗糖、乳糖和磷酸根等物质。许多文章报导了 GOD 生物传感器的研究工作。我们曾报导过以聚吡咯为衬底,上面涂上 LB 膜的 GOD 生物传感器在医学领域内对发展微型和方便的 GOD 生物传感器的需求在不断的增加。为了使电极便于微型化,本工作在我们已制得的三电极的电池上加以改进。
文摘A new route for the preparation of silver nanoshells on silica spheres, leading to the establishment of a simple, efficient and easy-to-scale-up way for the synthesis of smooth silver nanoshells on silica monodispersed spheres, is reported through transforming the silver oxide shell to zero-valence silver by thermal cracking, applying surface strain theory to alter the shape of core-metal shell colloidal and form smooth metal nanoshell in hot inert flowing liquid. SEM images show that the silver nanoshells may be formed at 130 ℃ and deformed at 180 ℃ in hot inert flowing liquid. XRD indicates the formation of cubic structure pure silver with high crystallinity. Also, EDX and UV diffuse reflection spectrum analyses were conducted to characterize the as-prepared samples.