低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density pea...低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。展开更多
为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法。首先,运用二阶聚类将台区不同的运行工况进行聚类...为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法。首先,运用二阶聚类将台区不同的运行工况进行聚类,将相同工况的线损节点归并,然后将各类工况的节点线损数据导入RRCF算法中分析,通过删除和插入样本节点,并对插入节点后评判模型的复杂度进行计算,得到线损异常节点的评分值,进一步找出线损异常的节点。最终,通过有关实例验证所提方法的准确性与有效性。展开更多
文摘低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。
文摘为精准识别台区的线损异常,保证配电网经济、稳定运行,针对台区线损的异常情况,提出一种基于二阶聚类和鲁棒性随机分割森林(robust random cut forest,RRCF)算法的台区线损异常检测方法。首先,运用二阶聚类将台区不同的运行工况进行聚类,将相同工况的线损节点归并,然后将各类工况的节点线损数据导入RRCF算法中分析,通过删除和插入样本节点,并对插入节点后评判模型的复杂度进行计算,得到线损异常节点的评分值,进一步找出线损异常的节点。最终,通过有关实例验证所提方法的准确性与有效性。