针对一类具有未知函数控制增益的非线性系统,利用RBF神经网络的逼近能力,依据滑模控制原理,提出了一种直接自适应神经网络控制器设计新方案。通过引入积分型切换函数及逼近误差自适应补偿项,监督控制用饱和函数代替符号函数,根据李雅普...针对一类具有未知函数控制增益的非线性系统,利用RBF神经网络的逼近能力,依据滑模控制原理,提出了一种直接自适应神经网络控制器设计新方案。通过引入积分型切换函数及逼近误差自适应补偿项,监督控制用饱和函数代替符号函数,根据李雅普诺夫稳定性理论,证明了闭环系统是全局稳定的,跟踪误差收敛到零。该算法应用于连续搅拌型化学反应器CSTR(Continuous Stirred Tank Reactor),仿真结果显示,该算法能很好地使CSTR跟踪给定的温度信号,表明了该控制策略的有效性。展开更多
文摘针对一类具有未知函数控制增益的非线性系统,利用RBF神经网络的逼近能力,依据滑模控制原理,提出了一种直接自适应神经网络控制器设计新方案。通过引入积分型切换函数及逼近误差自适应补偿项,监督控制用饱和函数代替符号函数,根据李雅普诺夫稳定性理论,证明了闭环系统是全局稳定的,跟踪误差收敛到零。该算法应用于连续搅拌型化学反应器CSTR(Continuous Stirred Tank Reactor),仿真结果显示,该算法能很好地使CSTR跟踪给定的温度信号,表明了该控制策略的有效性。