本文制备了基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件,对该器件进行了温度特性I-V曲线测试.器件表现出了良好的二极管特性,随着温度从300 K升高至473 K,势垒高度从1.08 e V上升至1.35 e V,理想因子从1.32降低至1.19,二者表现出了...本文制备了基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件,对该器件进行了温度特性I-V曲线测试.器件表现出了良好的二极管特性,随着温度从300 K升高至473 K,势垒高度从1.08 e V上升至1.35 e V,理想因子从1.32降低至1.19,二者表现出了较强的温度依赖特性,这表明器件的肖特基势垒存在势垒高度不均匀的问题.串联电阻随温度升高而降低,这主要是热激发载流子浓度升高导致的.本文利用势垒高度的高斯分布对器件的温度特性进行了修正,修正后的势垒高度为1.54 e V,理查孙常数为26.35 A·cm–2·K–2,更接近理论值,这表明利用高斯分布势垒高度的热电子发射模型能够很好地解释Au/Ni/β-Ga2O3肖特基二极管的I-V温度特性问题,这种方法更适合用来测量β-Ga2O3肖特基二极管的电学参数.展开更多
文摘本文制备了基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件,对该器件进行了温度特性I-V曲线测试.器件表现出了良好的二极管特性,随着温度从300 K升高至473 K,势垒高度从1.08 e V上升至1.35 e V,理想因子从1.32降低至1.19,二者表现出了较强的温度依赖特性,这表明器件的肖特基势垒存在势垒高度不均匀的问题.串联电阻随温度升高而降低,这主要是热激发载流子浓度升高导致的.本文利用势垒高度的高斯分布对器件的温度特性进行了修正,修正后的势垒高度为1.54 e V,理查孙常数为26.35 A·cm–2·K–2,更接近理论值,这表明利用高斯分布势垒高度的热电子发射模型能够很好地解释Au/Ni/β-Ga2O3肖特基二极管的I-V温度特性问题,这种方法更适合用来测量β-Ga2O3肖特基二极管的电学参数.