通过微细观结构分析、低场核磁共振量化研究,科学、准确地描述膏体跨尺度颗粒群存在形态与水分赋存状态,并基于有限元和离散元耦合数值分析方法分析了泵压扰动下膏体颗粒流态演化规律.研究发现,膏体料浆中的吸附水、间隙水和弱自由水存...通过微细观结构分析、低场核磁共振量化研究,科学、准确地描述膏体跨尺度颗粒群存在形态与水分赋存状态,并基于有限元和离散元耦合数值分析方法分析了泵压扰动下膏体颗粒流态演化规律.研究发现,膏体料浆中的吸附水、间隙水和弱自由水存在动态连通与转化行为,并主要以吸附水形式存在,低场核磁共振技术(Low-field nuclear magnetic resonance,LF-NMR)弛豫强度与吸附水峰面积非线性增强,与料浆的流动表现出显著的正相关性.液网结构与絮网结构反映了导水通道的活跃性与力链结构的强度,共同组成了膏体稳定性与流动性的双支撑骨架结构.通过Fluent-EDEM软件耦合模拟,分析了脉冲泵压环境颗粒运动行为,在速度差的影响下高、低流速颗粒冲击扰动加剧,力链接触作用增强,流态均匀性和整体颗粒运动稳定性可有效提高.展开更多
文摘通过微细观结构分析、低场核磁共振量化研究,科学、准确地描述膏体跨尺度颗粒群存在形态与水分赋存状态,并基于有限元和离散元耦合数值分析方法分析了泵压扰动下膏体颗粒流态演化规律.研究发现,膏体料浆中的吸附水、间隙水和弱自由水存在动态连通与转化行为,并主要以吸附水形式存在,低场核磁共振技术(Low-field nuclear magnetic resonance,LF-NMR)弛豫强度与吸附水峰面积非线性增强,与料浆的流动表现出显著的正相关性.液网结构与絮网结构反映了导水通道的活跃性与力链结构的强度,共同组成了膏体稳定性与流动性的双支撑骨架结构.通过Fluent-EDEM软件耦合模拟,分析了脉冲泵压环境颗粒运动行为,在速度差的影响下高、低流速颗粒冲击扰动加剧,力链接触作用增强,流态均匀性和整体颗粒运动稳定性可有效提高.