为分析高速列车制动盘发热融化的雪水对转向架区域结冰的影响,建立包含拖车转向架和简化车体的几何模型和转向架制动盘甩水模型,采用三维非定常可实现k-ω双方程湍流模型与离散相模型耦合的数值方法,研究制动盘甩出的水滴在转向架区域...为分析高速列车制动盘发热融化的雪水对转向架区域结冰的影响,建立包含拖车转向架和简化车体的几何模型和转向架制动盘甩水模型,采用三维非定常可实现k-ω双方程湍流模型与离散相模型耦合的数值方法,研究制动盘甩出的水滴在转向架区域的分布。采用液膜模型研究水滴在转向架表面及转向架舱底面的沉积。研究结果表明:制动盘融化的雪水经制动盘甩出后大都存在于转向架的中间区域,在转向架两侧分布较少;这些水滴主要沉积在构架中间区域、前后制动装置、空气弹簧内侧面、牵引梁和牵引拉杆靠近后轮对的区域,而在轴箱装置、垂向减振器、纵向减振器和横向减振器上沉积的水滴较少;在200,250和300 km/h 3种不同速度下,转向架表面总的液膜质量呈现出先下降后上升的趋势;转向架舱底面沉积的水滴主要分布在靠近制动盘附近的表面。展开更多
文摘为分析高速列车制动盘发热融化的雪水对转向架区域结冰的影响,建立包含拖车转向架和简化车体的几何模型和转向架制动盘甩水模型,采用三维非定常可实现k-ω双方程湍流模型与离散相模型耦合的数值方法,研究制动盘甩出的水滴在转向架区域的分布。采用液膜模型研究水滴在转向架表面及转向架舱底面的沉积。研究结果表明:制动盘融化的雪水经制动盘甩出后大都存在于转向架的中间区域,在转向架两侧分布较少;这些水滴主要沉积在构架中间区域、前后制动装置、空气弹簧内侧面、牵引梁和牵引拉杆靠近后轮对的区域,而在轴箱装置、垂向减振器、纵向减振器和横向减振器上沉积的水滴较少;在200,250和300 km/h 3种不同速度下,转向架表面总的液膜质量呈现出先下降后上升的趋势;转向架舱底面沉积的水滴主要分布在靠近制动盘附近的表面。